TensorFlow学习笔记(二)

本文通过实例演示了如何使用TensorFlow构建神经网络进行数据拟合,并介绍了不同优化器的效果对比,同时展示了训练过程的可视化方法及如何利用TensorBoard进行神经网络的可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 1.
import tensorflow as tf
import numpy as np

def add_layer(inputs,in_size,out_size,actvation_function=None):
    Weights = tf.Variable(tf.random_normal([in_size,out_size]))
    biases = tf.Variable(tf.zeros([1,out_size]) + 0.1) 
    Wx_plus_b = tf.matmul(inputs,Weights) + biases
    if activation_function is None:
        outputs = Wx_plus_b
    else:
        outputs = activation_function(Wx_plus_b)
    return outputs

x_data = np.linspace(-1,1,300)[:,np.newaxis]

noise = np.random.normal(0,0.05,x_data.shape)

y_data = np.square(x_data) - 0.5 + noise

xs = tf.placeholder(tf.float32,[None,1])
ys = tf.placeholder(tf.float32,[None,1])

l1 = add_layer(xs, 1, 1,10, activation_function=tf.nn.relu)
prediction = add_layer(l1, 10,1,activation_function=None)

loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reducton_indices=[1]))

train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

init = tf.initialize_all_variables()

sess = tf.Session()

sess.run(init)

for i in range(1000):
    sess.run(train_step, feed_dict={xs:x_data,ys:y_data})
    if i % 50 == 0:
        print(sess.run(loss, feed_dict={xs:x_data,ys:y_data}))

2.可视化

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

def add_layer(inputs,in_size,out_size,actvation_function=None):
    Weights = tf.Variable(tf.random_normal([in_size,out_size]))
    biases = tf.Variable(tf.zeros([1,out_size]) + 0.1) 
    Wx_plus_b = tf.matmul(inputs,Weights) + biases
    if activation_function is None:
        outputs = Wx_plus_b
    else:
        outputs = activation_function(Wx_plus_b)
    return outputs

x_data = np.linspace(-1,1,300)[:,np.newaxis]

noise = np.random.normal(0,0.05,x_data.shape)

y_data = np.square(x_data) - 0.5 + noise

xs = tf.placeholder(tf.float32,[None,1])
ys = tf.placeholder(tf.float32,[None,1])

l1 = add_layer(xs, 1, 1,10, activation_function=tf.nn.relu)
prediction = add_layer(l1, 10,1,activation_function=None)

loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reducton_indices=[1]))

train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

init = tf.initialize_all_variables()

sess = tf.Session()

sess.run(init)

fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data,y_data)
plt.ion()
#plt.show(block=False)  old version

for i in range(1000):
    sess.run(train_step, feed_dict={xs:x_data,ys:y_data})
    if i % 50 == 0:
        #print(sess.run(loss, feed_dict={xs:x_data,ys:y_data}))
        try:
                ax.lines.remove(lines[0])
        except Exception:
                pass
        prediction_value = sess.run(prediction,feed_dict={xs:x_data})
        lines = ax.plot(x_data, prediction_value, 'r-', lw=5)
        plt.pause(0.1)

3.Optomizer
GradientDescentOptimizer—–取决于data 的size以及type
AdadeltaOptomizer
AdagradOptimizer
AdamOptimizer
MomentumOptomizer——–不仅仅考虑本步的学习效率,还考虑上一步的学习效率,比GradientDescentOptimizer更加快速到达
RMSPropOptimizer—阿尔法Go

4.可视化神经网络

"""
Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly.
"""
import tensorflow as tf


def add_layer(inputs, in_size, out_size, activation_function=None):
    # add one more layer and return the output of this layer
    with tf.name_scope('layer'):
        with tf.name_scope('weights'):
            Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W')
        with tf.name_scope('biases'):
            biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name='b')
        with tf.name_scope('Wx_plus_b'):
            Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
        if activation_function is None:
            outputs = Wx_plus_b
        else:
            outputs = activation_function(Wx_plus_b, )
        return outputs


# define placeholder for inputs to network
with tf.name_scope('inputs'):
    xs = tf.placeholder(tf.float32, [None, 1], name='x_input')
    ys = tf.placeholder(tf.float32, [None, 1], name='y_input')

# add hidden layer
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
# add output layer
prediction = add_layer(l1, 10, 1, activation_function=None)

# the error between prediciton and real data
with tf.name_scope('loss'):
    loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
                                        reduction_indices=[1]))

with tf.name_scope('train'):
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

sess = tf.Session()
writer = tf.train.SummaryWriter("logs/", sess.graph)
# important step
sess.run(tf.initialize_all_variables())

进入terminal模式,然后执行如下命令
tersorboard –logdir=’/logs’
然后打开浏览器,输入显示的host, 然后进入graph
5.TensorBoard

"""
Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly.
"""
import tensorflow as tf
import numpy as np


def add_layer(inputs, in_size, out_size, n_layer, activation_function=None):
    # add one more layer and return the output of this layer
    layer_name = 'layer%s' % n_layer
    with tf.name_scope(layer_name):
        with tf.name_scope('weights'):
            Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W')
            tf.histogram_summary(layer_name + '/weights', Weights)
        with tf.name_scope('biases'):
            biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name='b')
            tf.histogram_summary(layer_name + '/biases', biases)
        with tf.name_scope('Wx_plus_b'):
            Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
        if activation_function is None:
            outputs = Wx_plus_b
        else:
            outputs = activation_function(Wx_plus_b, )
        tf.histogram_summary(layer_name + '/outputs', outputs)
        return outputs


# Make up some real data
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise

# define placeholder for inputs to network
with tf.name_scope('inputs'):
    xs = tf.placeholder(tf.float32, [None, 1], name='x_input')
    ys = tf.placeholder(tf.float32, [None, 1], name='y_input')

# add hidden layer
l1 = add_layer(xs, 1, 10, n_layer=1, activation_function=tf.nn.relu)
# add output layer
prediction = add_layer(l1, 10, 1, n_layer=2, activation_function=None)

# the error between prediciton and real data
with tf.name_scope('loss'):
    loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
                                        reduction_indices=[1]))
    tf.scalar_summary('loss', loss)

with tf.name_scope('train'):
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

sess = tf.Session()
merged = tf.merge_all_summaries()
writer = tf.train.SummaryWriter("logs/", sess.graph)
# important step
sess.run(tf.initialize_all_variables())

for i in range(1000):
    sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
    if i % 50 == 0:
        result = sess.run(merged,
                          feed_dict={xs: x_data, ys: y_data})
        writer.add_summary(result, i)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值