以线程池的概念爬取Top250图片

import time
import concurrent.futures
import requests
from lxml import etree

headers = {
    "Referer": "https://movie.douban.com/top250?start=225&filter=",
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.18362',
}


def download_image(url, name):
    """
    下载图片并保存到本地
    """
    response = requests.get(url=url, headers=headers)
    content = response.content
    with open(f'img1/{name}.jpg', 'wb') as fp:
        fp.write(content)


def crawl_page(url):
    """
    爬取页面内容并提取电影图片和名称
    """
    response = requests.get(url=url, headers=headers)
    content = response.text
    qwer = etree.HTML(content)
    for i in range(1, 26):
        zp = qwer.xpath(f'//*[@id="content"]/div/div[1]/ol/li[{i}]/div/div[1]/a/img/@src')
        name = qwer.xpath(f'//*[@id="content"]/div/div[1]/ol/li[{i}]/div/div[2]/div[1]/a/span[1]/text()')
        if zp and name:
            tp = str(zp[0])
            print(name[0])
            download_image(tp, name[0])


if __name__ == '__main__':
    start_time = time.time()

    # 创建线程池,限制最大线程数为4
    with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor:
        urls = [f'https://movie.douban.com/top250?start={i}&filter=' for i in range(0, 226, 25)]
        # 提交任务给线程池
        executor.map(crawl_page, urls)
    end_time = time.time()
    print("总耗时:", end_time - start_time)
    #总耗时: 13.306219339370728

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值