redis实现分布式锁

本文介绍了Redis如何实现分布式锁,包括利用SETNX和EXPIRE的非原子性问题,锁误解除,超时解锁并发问题,不可重入性,以及集群环境下的主备切换和脑裂问题。提出了解决方案,如使用lua脚本确保原子性,记录重入次数,以及RedLock算法来提高锁的可靠性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分布式锁的一些特点

分布式锁的特点:

  • 原子性: 加锁的过程, 要么执行成功, 要么执行失败, 不存在中间状态;
  • 互斥性: 和本地锁一样, 互斥性是最基本的, 而分布式锁需要保证在不同节点在不同线程的互斥;
  • 可重入性: 同一个节点上的同一个线程, 如果获取到这个锁之后也可以再次获取到这个锁;
  • 锁超时: 和本地锁一样, 支持锁超时, 防止死锁;
  • 高可用(或高可靠redLock): 加锁和解锁需要高效,同时也需要保证高可用防止分布式锁失效,可以增加降级。
  • 支持阻塞和非阻塞:和ReentrantLock一样支持lock和trylock以及tryLock(long timeOut)。
  • 支持公平锁和非公平锁(可选): 公平锁的意思是按照请求加锁的顺序获得锁,非公平锁就相反是无序的。这个一般来说实现的比较少。

Redis实现分布式锁

在系统中修改已有数据时,需要先读取,然后进行修改保存,此时很容易遇到并发问题。由于修改和保存不是原子操作,在并发场景下,部分对数据的操作可能会丢失。在单服务器系统我们常用本地锁来避免并发带来的问题,然而,当服务采用集群方式部署时,本地锁无法在多个服务器之间生效,这时候保证数据的一致性就需要分布式锁来实现。
在这里插入图片描述

二、实现

Redis 锁主要利用 Redis 的 setnx 命令。

  • 加锁命令:SETNX key value(set if not exist),当键不存在时,对键进行设置操作并返回成功,否则返回失败。KEY 是锁的唯一标识,一般按业务来决定命名。
  • 解锁命令:DEL key,通过删除键值对释放锁,以便其他线程可以通过 SETNX 命令来获取锁。
  • 锁超时:EXPIRE key timeout, 设置 key 的超时时间,以保证即使锁没有被显式释放,锁也可以在一定时间后自动释放,避免资源被永远锁住。

则加锁解锁伪代码如下:

if (setnx(key, 1) == 1){
    expire(key, 30)
    try {
        //TODO 业务逻辑
    } finally {
        del(key)
    }
}

上述锁实现方式存在一些问题:

1. SETNX 和 EXPIRE 非原子性

如果 SETNX 成功,在设置锁超时时间后,服务器挂掉、重启或网络问题等,导致 EXPIRE 命令没有执行,锁没有设置超时时间变成死锁。
在这里插入图片描述
有很多开源代码来解决这个问题,比如使用 lua 脚本。示例:

if (redis.call('setnx', KEYS[1], ARGV[1]) < 1)
then return 0;
end;
redis.call('expire', KEYS[1], tonumber(ARGV[2]));
return 1;

// 使用实例
"local value = redis.call('get',KEYS[1])\n" +
            "if value then\n" +
            "    if value == ARGV[1]\n" +
            "        then\n" +
            "            redis.call('del',KEYS[1])\n" +
            "            return 1\n" +
            "        else\n" +
            "            return -1\n" +
            "        end\n" +
            "    else\n" +
            "        return -2\n" +
            "end"

使用lua脚本的原因: setNX和expire是两个操作, 不具备原子性, 用lua脚本来保持其原子性.


2. 锁误解除

如果线程 A 成功获取到了锁,并且设置了过期时间 30 秒,但线程 A 执行时间超过了 30 秒,锁过期自动释放,此时线程 B 获取到了锁;随后 A 执行完成,线程 A 使用 DEL 命令来释放锁,但此时线程 B 加的锁还没有执行完成,线程 A 实际释放的线程 B 加的锁。
在这里插入图片描述
通过在 value 中设置当前线程加锁的标识,在删除之前验证 key 对应的 value 判断锁是否是当前线程持有。可生成一个 UUID 标识当前线程,使用 lua 脚本做验证标识和解锁操作。

// 加锁
String uuid = UUID.randomUUID().toString().replaceAll("-","");
SET key uuid NX EX 30
// 解锁
if (redis.call('get', KEYS[1]) == ARGV[1])
    then return redis.call('del', KEYS[1])
else return 0
end

3. 超时解锁导致并发

如果线程 A 成功获取锁并设置过期时间 30 秒,但线程 A 执行时间超过了 30 秒,锁过期自动释放,此时线程 B 获取到了锁,线程 A 和线程 B 并发执行。

在这里插入图片描述
A、B 两个线程发生并发显然是不被允许的,一般有两种方式解决该问题:

  • 将过期时间设置足够长,确保代码逻辑在锁释放之前能够执行完成。
  • 为获取锁的线程增加守护线程,为将要过期但未释放的锁增加有效时间。

4. 不可重入

当线程在持有锁的情况下再次请求加锁,如果一个锁支持一个线程多次加锁,那么这个锁就是可重入的。如果一个不可重入锁被再次加锁,由于该锁已经被持有,再次加锁会失败。Redis 可通过对锁进行重入计数,加锁时加 1,解锁时减 1,当计数归 0 时释放锁。

在本地记录记录重入次数,如 Java 中使用 ThreadLocal 进行重入次数统计,简单示例代码:

private static ThreadLocal<Map<String, Integer>> LOCKERS = ThreadLocal.withInitial(HashMap::new);
// 加锁
public boolean lock(String key) {
  Map<String, Integer> lockers = LOCKERS.get();
  if (lockers.containsKey(key)) {
    lockers.put(key, lockers.get(key) + 1);
    return true;
  } else {
    if (SET key uuid NX EX 30) {
      lockers.put(key, 1);
      return true;
    }
  }
  return false;
}
// 解锁
public void unlock(String key) {
  Map<String, Integer> lockers = LOCKERS.get();
  if (lockers.getOrDefault(key, 0) <= 1) {
    lockers.remove(key);
    DEL key
  } else {
    lockers.put(key, lockers.get(key) - 1);
  }
}

本地记录重入次数虽然高效,但如果考虑到过期时间和本地、Redis 一致性的问题,就会增加代码的复杂性。另一种方式是 Redis Map 数据结构来实现分布式锁,既存锁的标识也对重入次数进行计数。Redission 加锁示例:

// 如果 lock_key 不存在
if (redis.call('exists', KEYS[1]) == 0)
then
    // 设置 lock_key 线程标识 1 进行加锁
    redis.call('hset', KEYS[1], ARGV[2], 1);
    // 设置过期时间
    redis.call('pexpire', KEYS[1], ARGV[1]);
    return nil;
    end;
// 如果 lock_key 存在且线程标识是当前欲加锁的线程标识
if (redis.call('hexists', KEYS[1], ARGV[2]) == 1)
    // 自增
    then redis.call('hincrby', KEYS[1], ARGV[2], 1);
    // 重置过期时间
    redis.call('pexpire', KEYS[1], ARGV[1]);
    return nil;
    end;
// 如果加锁失败,返回锁剩余时间
return redis.call('pttl', KEYS[1]);

5. 无法等待锁释放

上述命令执行都是立即返回的,如果客户端可以等待锁释放就无法使用。

  • 可以通过客户端轮询的方式解决该问题,当未获取到锁时,等待一段时间重新获取锁,直到成功获取锁或等待超时。这种方式比较消耗服务器资源,当并发量比较大时,会影响服务器的效率。
  • 另一种方式是使用 Redis 的发布订阅功能,当获取锁失败时,订阅锁释放消息,获取锁成功后释放时,发送锁释放消息。如下:
    在这里插入图片描述

三、集群

1. 主备切换在这里插入图片描述

为了保证 Redis 的可用性,一般采用主从方式部署。主从数据同步有异步和同步两种方式,Redis 将指令记录在本地内存 buffer 中,然后异步将 buffer 中的指令同步到从节点,从节点一边执行同步的指令流来达到和主节点一致的状态,一边向主节点反馈同步情况。

在包含主从模式的集群部署方式中,当主节点挂掉时,从节点会取而代之,但客户端无明显感知。当客户端 A 成功加锁,指令还未同步,此时主节点挂掉,从节点提升为主节点,新的主节点没有锁的数据,当客户端 B 加锁时就会成功。


2. 集群脑裂

集群脑裂指因为网络问题,导致 Redis master 节点跟 slave 节点和 sentinel 集群处于不同的网络分区,因为 sentinel 集群无法感知到 master 的存在,所以将 slave 节点提升为 master 节点,此时存在两个不同的 master 节点。Redis Cluster 集群部署方式同理。

当不同的客户端连接不同的 master 节点时,两个客户端可以同时拥有同一把锁。如下:
在这里插入图片描述
集群脑裂问题中,如果客户端还在基于原来的master节点继续写入数据,那么新的master节点将无法同步这些数据,当网络问题解决之后,sentinel集群将原先的master节点降为slave节点,此时再从新的master中同步数据,将会造成大量的数据丢失。

解决(减少数据丢失)

redis的配置文件中,存在两个参数

min-slaves-to-write 3
min-slaves-max-lag 10

第一个参数表示连接到master的最少slave数量
第二个参数表示slave连接到master的最大延迟时间

按照上面的配置,要求至少3个slave节点,且数据复制和同步的延迟不能超过10秒,否则的话master就会拒绝写请求,配置了这两个参数之后,如果发生集群脑裂,原先的master节点接收到客户端的写入请求会拒绝,就可以减少数据同步之后的数据丢失。


RedLock

我们想象一个这样的场景当机器A申请到一把锁之后,如果Redis主宕机了,这个时候从机并没有同步到这一把锁,那么机器B再次申请的时候就会再次申请到这把锁,为了解决这个问题Redis作者提出了RedLock红锁的算法,在Redission中也对RedLock进行了实现。
通过上面的代码,我们需要实现多个Redis集群,然后进行红锁的加锁,解锁。具体的步骤如下:

在这里插入图片描述
通过上面的代码,我们需要实现多个Redis集群,然后进行红锁的加锁,解锁。具体的步骤如下:

  1. 首先生成多个Redis集群的Rlock,并将其构造成RedLock。
  2. 依次循环对集群中节点进行加锁。
  3. 如果循环加锁的过程中存在加锁失败情况,那么需要判断加锁成功的次数是否超半数以上,超过则获取锁, 否则加锁失败;
  4. 加锁的过程中需要判断是否加锁超时,有可能我们设置加锁只能用3ms,第一个集群加锁已经消耗了3ms了。那么也算加锁失败。
  5. 3,4步里面加锁失败的话,那么就会进行解锁操作,解锁会对所有的集群在请求一次解锁。

可以看见RedLock基本原理是利用多个Redis集群,用多数的集群加锁成功,减少Redis某个集群出故障,造成分布式锁出现问题的概率。

参考文章:
https://xiaomi-info.github.io/2019/12/17/redis-distributed-lock/
https://juejin.cn/post/6844903688088059912
https://zhuanlan.zhihu.com/p/133722168

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值