hdu------1280 前m大的数

探讨了如何通过两两组合N个数来找出最大的M个和,并使用C++实现排序与输出。

题目:
Problem
还记得Gardon给小希布置的那个作业么?(上次比赛的1005)其实小希已经找回了原来的那张数表,现在她想确认一下她的答案是否正确,但是整个的答案是很庞大的表,小希只想让你把答案中最大的M个数告诉她就可以了。
给定一个包含N(N<=3000)个正整数的序列,每个数不超过5000,对它们两两相加得到的N*(N-1)/2个和,求出其中前M大的数(M<=1000)并按从大到小的顺序排列。  

Input
输入可能包含多组数据,其中每组数据包括两行:
第一行两个数N和M,
第二行N个数,表示该序列。
Output
对于输入的每组数据,输出M个数,表示结果。输出应当按照从大到小的顺序排列。
Sample Input
4 4 1 2 3 4 4 5 5 3 6 4
 

Sample Output
7 6 5 5 11 10 9 9 8

题目思路:n个数,对于任意的两个数相加有n*(n-1)个和,用笨一点的方法,就一一算出来,再用sort排序,反过来输出前m个数

#include <iostream>
#include <algorithm>
using namespace std;
int s[5000000];//这里要用全局变量,不然就会报错,<img alt="疑问" src="http://static.blog.youkuaiyun.com/xheditor/xheditor_emot/default/doubt.gif" />
int main()
{
    int n,m,i,k,a[3000],j;
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        k=0;
        for(i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
        }
        for(i=1;i<=n;i++)
        {
            for(j=i+1;j<=n;j++)
            {
                s[k++]=a[i]+a[j];
            }
        }
        sort(s,s+k);
        for(i=k-1;i>=k-m;i--)
        {
            if(i==k-m)
                printf("%d",s[i]);
            else
                printf("%d ",s[i]);
        }
        cout<<endl;
    }
    return 0;
}


HDU-3480 是一个典型的动态规划问题,其题目标题通常为 *Division*,主要涉及二维费用背包问题或优化后的动态规划策略。题目意是:给定一个整数组,将其划分为若干个连续的子集,每个子集最多包含 $ m $ 个元素,并每个子集的最值与最小值之差不能超过给定的阈值 $ t $,目标是使所有子集的划分代价总和最小。每个子集的代价是该子集最值与最小值的差值。 ### 动态规划思路 设 $ dp[i] $ 表示 $ i $ 个元素的最小代价。状态转移方程如下: $$ dp[i] = \min_{j=0}^{i-1} \left( dp[j] + cost(j+1, i) \right) $$ 其中 $ cost(j+1, i) $ 表示从第 $ j+1 $ 到第 $ i $ 个元素构成一个子集的代价,即 $ \max(a[j+1..i]) - \min(a[j+1..i]) $。 为了高效计算 $ cost(j+1, i) $,可以使用滑动窗口或单调队列等据结构来维护区间值与最小值,从而将时间复杂度优化到可接受的范围。 ### 示例代码 以下是一个简化版本的动态规划实现,使用暴力方式计算区间代价,适用于理解问题结构: ```cpp #include <bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f; const int MAXN = 10010; int a[MAXN]; int dp[MAXN]; int main() { int T, n, m; cin >> T; for (int Case = 1; Case <= T; ++Case) { cin >> n >> m; for (int i = 1; i <= n; ++i) cin >> a[i]; dp[0] = 0; for (int i = 1; i <= n; ++i) { dp[i] = INF; int mn = a[i], mx = a[i]; for (int j = i; j >= max(1, i - m + 1); --j) { mn = min(mn, a[j]); mx = max(mx, a[j]); if (mx - mn <= T) { dp[i] = min(dp[i], dp[j - 1] + mx - mn); } } } cout << "Case " << Case << ": " << dp[n] << endl; } return 0; } ``` ### 优化策略 - **单调队列**:可以使用两个单调队列分别维护当窗口的最值与最小值,从而将区间代价计算的时间复杂度从 $ O(n^2) $ 降低到 $ O(n) $。 - **斜率优化**:若问题满足特定的决策单调性,可以考虑使用斜率优化技巧进一步加速状态转移过程。 ### 时间复杂度分析 原始暴力解法的时间复杂度为 $ O(n^2) $,在 $ n \leq 10^4 $ 的情况下可能勉强通过。通过单调队列优化后,可以稳定运行于 $ O(n) $ 或 $ O(n \log n) $。 ### 应用场景 HDU-3480 的问题模型可以应用于资源调度、任务划分等场景,尤其适用于需要控制子集内部差异的问题,如图像分块压缩、据分段处理等[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值