使用动态规划将FICO分数转换为分类数据,以预测违约情况。
import pandas as pd
file_path_second = 'C:/Users/冰火人/Desktop/项目/Task 3 and 4_Loan_Data.2.csv'
try:
# 尝试读取文件,假设文件是CSV格式
data_second = pd.read_csv(file_path_second)
except Exception as e:
# 如果读取失败,输出错误信息
error_message_second = str(e)
# 如果成功读取,展示前几行数据;如果失败,展示错误信息
if 'data_second' in locals():
preview_second = data_second.head()
else:
preview_second = error_message_second
preview_second
import numpy as np
# 假设我们选择5个评级
num_ratings = 5
# 提取FICO分数数据
fico_scores = data_second['fico_score'].dropna().astype(int) # 确保FICO分数是整数且没有缺失值
# 计算FICO分数的边界(使用等频分箱方法)
# 这里我们使用numpy的percentile函数来计算分位数,以确保每个桶中的记录数大致相等
percentiles = np.linspace(0, 100, num_ratings + 1)[1:-1] # 排除0%和100%
fico_boundaries = np.percentile(fico_scores, percentiles)
# 输出FICO分数的边界
fico_boundaries.tolist()
# 创建评级映射函数
def map_fico_to_rating(fico_score, boundaries):
for i, boundary in enumerate(boundaries):
if fico_score <= boundary:
return i + 1 # 评级从1开始
return len(boundaries) + 1 # 如果FICO分数大于所有边界,则分配到最高评级
# 应用评级映射函数
data_second['rating'] = data_second['fico_score'].apply(lambda x: map_fico_to_rating(x, fico_boundaries))
# 计算每个评级的平均FICO分数和违约率
rating_summary = data_second.groupby('rating').agg({
'fico_score': 'mean',
'default': lambda x: (x == 1).mean() # 违约率,即默认值为1的比例
}).reset_index()
# 重命名列以便理解
rating_summary.columns = ['rating', 'average_fico_score', 'default_rate']
rating_summary
大概项目速通完后会有一个免费证书可以领取。
同时还发了一封贺信,很能激励人,感兴趣的朋友可以看看。
https://wx.mail.qq.com/list/readtemplate?name=share_mail.html&share_id=4805274f-10dd-4b95-9022-edae01fadfba