部分内容转自 http://blog.youkuaiyun.com/y1196645376/article/details/69718192/
第七题
标题:日期问题
小明正在整理一批历史文献。这些历史文献中出现了很多日期。小明知道这些日期都在1960年1月1日至2059年12月31日。令小明头疼的是,这些日期采用的格式非常不统一,有采用年/月/日的,有采用月/日/年的,还有采用日/月/年的。更加麻烦的是,年份也都省略了前两位,使得文献上的一个日期,存在很多可能的日期与其对应。
比如02/03/04,可能是2002年03月04日、2004年02月03日或2004年03月02日。
给出一个文献上的日期,你能帮助小明判断有哪些可能的日期对其对应吗?
输入
----
一个日期,格式是"AA/BB/CC"。 (0 <= A, B, C <= 9)
输出
----
输出若干个不相同的日期,每个日期一行,格式是"yyyy-MM-dd"。多个日期按从早到晚排列。
样例输入
----
02/03/04
样例输出
----
2002-03-04
2004-02-03
2004-03-02
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include <xxx>
不能通过工程设置而省略常用头文件。
提交程序时,注意选择所期望的语言类型和编译器类型。
做法:很多细节,只需要把三种日期格式对应日期都枚举出来,然后排除非法日期和不在题目所述范围的日期。最后去重排序就可以了。做题的时候要注意,确保简单的题目作对,对于一些题目仔细审题,然后认真研究,做完之后根据题意检查,并测试典例!!
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
int month[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
int k=0;
struct node
{
int y,m,n;
}data[15];
int a,b,c;
void swap(int n)
{
int temp;
if(n==1)
{
temp=c;c=a;a=temp;
}
else
{
temp=b;b=c;c=temp;
}
return;
}
int cmp(node a,node b)
{
if(a.y>b.y) return 0;
else if(a.y==b.y&&a.m>b.m) return 0;
else if(a.y==b.y&&a.m==b.m&&a.n>b.n) return 0;
else return 1;
}
int main()
{
scanf("%d/%d/%d",&a,&b,&c);
for(int i=1;i<=3;i++)
{
int flag=0;//平年
//printf("%d %d %d\n",a,b,c);
if(a<=59) a=a+2000;
else a=a+1900;
if((a%4==0&&a%100!=0)||(a%400==0)) flag=1;
if(b>=1&&b<=12&&c>=1&&c<=month[b]+1)
{
if(flag==0&&c>month[b]) continue;
data[k].y=a;data[k].m=b;data[k].n=c;
//printf("%02d-%02d-%02d\n",data[k].y,data[k].m,data[k].n);
k++;
}
if(a>=2000) a=a-2000;
else a=a-1900;
if(i!=3)swap(i);
}
sort(data,data+k,cmp);
for(int i=0;i<k;i++)
{
if(i!=0&&data[i].y==data[i-1].y&&data[i].m==data[i-1].m&&data[i].n==data[i-1].n)
{
continue;
}
printf("%02d-%02d-%02d\n",data[i].y,data[i].m,data[i].n);
}
return 0;
}
第八题
标题:包子凑数
小明几乎每天早晨都会在一家包子铺吃早餐。他发现这家包子铺有N种蒸笼,其中第i种蒸笼恰好能放Ai个包子。每种蒸笼都有非常多笼,可以认为是无限笼。
每当有顾客想买X个包子,卖包子的大叔就会迅速选出若干笼包子来,使得这若干笼中恰好一共有X个包子。比如一共有3种蒸笼,分别能放3、4和5个包子。当顾客想买11个包子时,大叔就会选2笼3个的再加1笼5个的(也可能选出1笼3个的再加2笼4个的)。
当然有时包子大叔无论如何也凑不出顾客想买的数量。比如一共有3种蒸笼,分别能放4、5和6个包子。而顾客想买7个包子时,大叔就凑不出来了。
小明想知道一共有多少种数目是包子大叔凑不出来的。
输入
----
第一行包含一个整数N。(1 <= N <= 100)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100)
输出
----
一个整数代表答案。如果凑不出的数目有无限多个,输出INF。
例如,
输入:
2
4
5
程序应该输出:
6
再例如,
输入:
2
4
6
程序应该输出:
INF
样例解释:
对于样例1,凑不出的数目包括:1, 2, 3, 6, 7, 11。
对于样例2,所有奇数都凑不出来,所以有无限多个。
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include <xxx>
不能通过工程设置而省略常用头文件。
提交程序时,注意选择所期望的语言类型和编译器类型。
做法:这是扩展欧几里德变形的,有个定理。如果满足所有数的最大公约数不为1则有无穷个,否则都是有限个。然后利用完全背包就可以统计了。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
const int N=10010;
int num[110];
int ans[N];
int gcd(int a,int b)
{
if(b>a)
{
int temp=b;b=a;a=temp;
}
int temp=a%b;
while(temp)
{
a=b;b=temp;temp=a%b;
}
return b;
}
int main()
{
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&num[i]);
}
int g=num[1];
for(int i=2;i<=n;i++)
{
g=gcd(g,num[i]);
//printf("%d\n",g);
}
if(g!=1)
{
printf("INF\n");
}
else
{
ans[0]=1;
for(int i=1;i<=n;i++)
{
for(int j=0;j+num[i]<N;j++)
{
if(ans[j]) ans[j+num[i]]=1;
}
}
int count=0;
for(int i=1;i<N;i++)
{
if(ans[i]!=1)
{
count ++;
}
}
printf("%d\n",count);
}
return 0;
}
第九题
标题: 分巧克力
儿童节那天有K位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有N块巧克力,其中第i块是Hi x Wi的方格组成的长方形。
为了公平起见,小明需要从这 N 块巧克力中切出K块巧克力分给小朋友们。切出的巧克力需要满足:
1. 形状是正方形,边长是整数
2. 大小相同
例如一块6x5的巧克力可以切出6块2x2的巧克力或者2块3x3的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小Hi计算出最大的边长是多少么?
输入
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含两个整数Hi和Wi。(1 <= Hi, Wi <= 100000)
输入保证每位小朋友至少能获得一块1x1的巧克力。
输出
输出切出的正方形巧克力最大可能的边长。
样例输入:
2 10
6 5
5 6
样例输出:
2
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include <xxx>
不能通过工程设置而省略常用头文件。
提交程序时,注意选择所期望的语言类型和编译器类型。
做法:二分答案,O(n)验证,总复杂度O(nlogn).
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
第十题
标题: k倍区间
给定一个长度为N的数列,A1, A2, ... AN,如果其中一段连续的子序列Ai, Ai+1, ... Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间。
你能求出数列中总共有多少个K倍区间吗?
输入
-----
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100000)
输出
-----
输出一个整数,代表K倍区间的数目。
例如,
输入:
5 2
1
2
3
4
5
程序应该输出:
6
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 2000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include <xxx>
不能通过工程设置而省略常用头文件。
提交程序时,注意选择所期望的语言类型和编译器类型。