Anaconda多环境多版本python配置指导

Anaconda多环境多版本python配置指导


最近学python,读完了语法后在GitHub找了一些练习来做,由 于学的是python3.x语法,而GitHub上的好多数练习源码都是基于2.x的,而有些有些module在python3.x上没有,因此为装这些 包折腾了好久,浪费了好些时间,这两天才发现Anaconda这个神奇的软件,它是python科学计算的一个分发版,据说常用的包都打包在里边了。并由 此得知还有不少该类型的软件。安装完成之后也遇到了不少麻烦,可能是由于初学,不习惯用命令行的缘故,因此网上有不少中文教程,但总是解决不了我的问题, 最后还是官方文档比较详细,在此翻译如下,希望帮助到英语不行的同学。

原文地址:http://conda.pydata.org/docs/test-drive.html


conda测试指南

在开始这个conda测试之前,你应该已经下载并安装好了Anaconda或者Miniconda
注意:在安装之后,你应该关闭并重新打开windows命令行。

一、Conda测试过程:

  1. 使用conda。首先我们将要确认你已经安装好了conda
  2. 配置环境。下一步我们将通过创建几个环境来展示conda的环境管理功能。使你更加轻松的了解关于环境的一切。我们将学习如何确认你在哪个环境中,以及如何做复制一个环境作为备份。
  3. 测试python。然后我们将检查哪一个版本的python可以被安装,以及安装另一个版本的python,还有在两个版本的python之间的切换。
  4. 检查包。我们将1)罗列出安装在我们电脑上的包,2)浏览可用的包,3)使用conda install命令来来安装以及移除一些包。对于一些不能使用conda安装的包,我们将4)在Anaconda.org网站上搜索。对于那些在其它位置 的包,我们将5)使用pip命令来实现安装。我们还会安装一个可以免费试用30天的商业包IOPro
  5. 移除包、环境以及conda.我们将以学习删除你的包、环境以及conda来结束这次测试。

二、完整过程

提示:在任何时候你可以通过在命令后边跟上-help来获得该命令的完整文档。例如,你可以通过如下的命令来学习conda的update命令。

conda update --help

1. 管理conda:

Conda既是一个包管理器又是一个环境管理器。你肯定知道包管理器,它可以帮你发现和查看包。但是如果当我们想要安装一个包,但是这个包只支持跟 我们目前使用的python不同的版本时。你只需要几行命令,就可以搭建起一个可以运行另外python版本的环境。,这就是conda环境管理器的强大 功能。
提示:无论你使用Linux、OS X或者Windows命令行工具,在你的命令行终端conda指令都是一样的,除非有特别说明。

检查conda已经被安装。

为了确保你已经在正确的位置安装好了conda,让我们来检查你是否已经成功安装好了Anaconda。在你的命令行终端窗口,输入如下代码:

conda --version

Conda会返回你安装Anaconda软件的版本。
提示:如果你看到了错误信息,检查你是否在安装过程中选择了仅为当前用户按安装,并且是否以同样的账户来操作。确保用同样的账户登录安装了之后重新打开命令行终端窗口。

升级当前版本的conda

接下来,让我们通过使用如下update命令来升级conda:

conda update conda

conda将会比较新旧版本并且告诉你哪一个版本的conda可以被安装。它也会通知你伴随这次升级其它包同时升级的情况。
如果新版本的conda可用,它会提示你输入y进行升级. 

proceed ([y]/n)? y

conda更新到最新版后,我们将进入下一个主题。

2. 管理环境。

现在我们通过创建一些环境来展示conda的环境操作,然后移动它们。

创建并激活一个环境

使用conda create命令,后边跟上你希望用来称呼它的任何名字:

conda create --name snowflake biopython

这条命令将会给Biopython创建一个新的环境,位置在/envs/snowflakes
小技巧:很多跟在--后边常用的命令

使用Anaconda可以方便地配置和管理不同版本的Python。首先,安装好Anaconda配置环境后,你可以通过创建新的环境来安装不同版本的Python。具体步骤可以参考引用[1]中提供的博文。 创建环境之后,你可以使用以下命令来确认当前所在的环境: ``` conda info --envs ``` 如果需要复制一个环境作为备份,可以使用以下命令: ``` conda create --name new_env --clone old_env ``` 要实现多版本Python管理,可以使用以下命令安装不同版本的Python: ``` conda install python=2.7 conda install python=3.7 ``` 切换Python版本时,可以使用以下命令: ``` conda activate env_name ``` 通过使用`conda list`命令,你可以罗列出已安装的包,并使用`conda install`或`conda remove`命令来安装或移除包。对于一些无法使用conda安装的包,你可以在Anaconda.org网站上搜索并使用`pip`命令来安装和移除这些包。 最后,如果你想删除某个包、环境或整个Anaconda,可以使用`conda remove`命令来完成。更多详细信息可以参考引用和提供的资源。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [Anaconda多环境多版本python配置指导](https://blog.youkuaiyun.com/gemmax/article/details/79214296)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [Anaconda多环境多版本python配置操作方法](https://download.youkuaiyun.com/download/weixin_38663837/13779424)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值