笔记 NEURAL NETS FOR VISION CVPR 2012 Tutorial on Deep Learning

这篇博客深入探讨了Fergus等人在CVPR 2012年会议上发表的关于深度学习与计算机视觉的教程,涵盖了神经网络在图像识别领域的应用与最新进展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

From:http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/tutorial_p2_nnets_ranzato_short.pdf


内容概要:文章基于4A架构(业务架构、应用架构、数据架构、技术架构),对SAP的成本中心和利润中心进行了详细对比分析。业务架构上,成本中心是成本控制的责任单元,负责成本归集与控制,而利润中心是利润创造的独立实体,负责收入、成本和利润的核算。应用架构方面,两者都依托于SAP的CO模块,但功能有所区分,如成本中心侧重于成本要素归集和预算管理,利润中心则关注内部交易核算和获利能力分析。数据架构中,成本中心与利润中心存在多对一的关系,交易数据通过成本归集、分摊和利润计算流程联动。技术架构依赖SAP S/4HANA的内存计算和ABAP技术,支持实时核算与跨系统集成。总结来看,成本中心和利润中心在4A架构下相互关联,共同为企业提供精细化管理和决策支持。 适合人群:从事企业财务管理、成本控制或利润核算的专业人员,以及对SAP系统有一定了解的企业信息化管理人员。 使用场景及目标:①帮助企业理解成本中心和利润中心在4A架构下的运作机制;②指导企业在实施SAP系统时合理配置成本中心和利润中心,优化业务流程;③提升企业对成本和利润的精细化管理水平,支持业务决策。 其他说明:文章不仅阐述了理论概念,还提供了具体的应用场景和技术实现方式,有助于读者全面理解并应用于实际工作中。
"neural oblivious decision ensembles for deep learning on tabular data" 是一种用于表格数据深度学习的神经网络无意识决策集合方法。在传统的深度学习中,神经网络往往以端到端的方式进行训练,对于每个输入样本都直接输出最终结果。然而,在某些情况下,这种端到端方式可能不够灵活和可解释,特别是在处理结构化的表格数据时。 这种方法引入了决策树集成的概念,通过将神经网络的输出与多个决策树进行集成,从而提高了模型的表现和可解释性。首先,神经网络用于提取表格数据的特征表示,然后将这些特征作为输入传递给多个决策树模型,每个决策树都将以不同的方式对特征进行划分和决策。最后,集成了所有决策树的结果,并根据需要进行后处理,以获得最终的预测结果。 将神经网络与决策树集成相结合,可以充分利用神经网络的学习能力和决策树的优势。神经网络可以自动学习特征表示和复杂的非线性关系,而决策树则可以提供更直观和可解释的预测规则。此外,决策树的集成可以改善模型的鲁棒性和泛化能力。 这种方法在处理表格数据时具有广泛的应用前景。例如,在金融领域,可以将这种方法应用于信用评分、风险预测和投资决策等任务。在医疗领域,可以利用该方法进行疾病诊断和预测患者的治疗效果。此外,在推荐系统、电子商务和广告领域,也可以利用神经网络无意识决策集合方法来提高个性化推荐和广告排序的效果。 总之,"neural oblivious decision ensembles for deep learning on tabular data" 是一种将神经网络和决策树集成的方法,用于处理结构化的表格数据,并在多个领域具有广泛的应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值