Absorbing markov chain

吸收马尔可夫链是一种数学概率理论中用于描述在某个状态进入后无法离开的状态的链模型。本文深入探讨了吸收马尔可夫链的定义、特性以及其在数学领域的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

In the mathematical theory of probability, an absorbing Markov chain is a Markov chain, in which every state can reach an absorbing state. An absorbing state is a state that, once entered, can not be left.


Definition:

   A Markov chain is an absorbing chain if,

  1) there is at least one absorbing state and

   2) it is possible to go from any state to at least one absorbing state in a finite number of steps.

   In an absorbing Markov chain, a state that is not absorbing is called transient.


Canonical form

Let an absorbing Markov chain with transition matrix P have t transient states and r absorbing states. Then

P =\left(\begin{array}{cc} Q & R\\ \mathbf{0} & I_r\end{array}\right),

where Q is a t-by-t matrix, R is a nonzero t-by-r matrix, 0 is an r-by-t zero matrix, and Ir is the r-by-r identity matrix. Thus, Q describes the probability of transitioning from some transient state to another while R describes the probability of transitioning from some transient state to some absorbing state.



From:http://en.wikipedia.org/wiki/Absorbing_Markov_chain

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值