PyTorch实现一个简单的二分类网络模型

本文详细介绍了如何利用PyTorch搭建一个基础的二分类神经网络模型,从数据预处理到模型训练,涵盖了神经网络的基本构建过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import torch 
from torch.autograd import Variable 
import torch.nn.functional as F 
import matplotlib.pyplot as plt 

n_data = torch.ones(100,2) 
x0 = torch.normal(2*n_data, 1)
y0 = torch.zeros(100) 
x1 = torch.normal(-2*n_data, 1) 
y1 = torch.ones(100)

x = torch.cat((x0, x1), 0).type(torch.FloatTensor) # 组装(连接) 
y = torch.cat((y0, y1), 0).type(torch.LongTensor)

x, y = Variable(x), Variable(y) 

class Net(torch.nn.Module):
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()
        self.hidden = torch.nn.Linear(n_feature, n_hidden)
        self.out = torch.nn.Linear(n_hidden, n_output)
    
    def forward(self, x):
        x = F.relu(self.hidden(x))
        x = self.out(x)
        return x

net = Net(2, 10, 2)

optimizer = torch.optim.SGD(net.parameters(), lr = 0.012)
for t in range(100):
    out = net(x)
    loss = torch.nn.CrossEntropyLoss()(out, y)
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值