题目描述:
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray [4,−1,2,1] has the largest sum = 6.
想到了二分法。
这个最大值要么包括nums[mid],要么就是在mid的左边或者右边。
要考虑到细节,不然就会出错!代码如下:
public class Solution {
public int maxSubArray(int[] nums) {
return findMaxSub(nums, 0, nums.length-1);
}
public int findMaxSub(int[] nums,int left,int right){
if(left==right)
return nums[left];
if(left>right)
return Integer.MIN_VALUE;
int mid=(left+right)/2,midSum=nums[mid];
int midLeft=mid-1,midLeftsum=0,leftSum=Integer.MIN_VALUE;
while(midLeft>=left){
midLeftsum+=nums[midLeft--];
if(midLeftsum>leftSum)
leftSum=midLeftsum;
}
int midRight=mid+1,midRightSum=0,rightSum=Integer.MIN_VALUE;
while(midRight<=right){
midRightSum+=nums[midRight++];
if(midRightSum>rightSum){
rightSum=midRightSum;
}
}
if(leftSum>0)
midSum+=leftSum;
if(rightSum>0)
midSum+=rightSum;
int leftMaxSub=findMaxSub(nums, left, mid-1);
int rightMaxSub=findMaxSub(nums, mid+1, right);
return Integer.max(Integer.max(leftMaxSub, rightMaxSub),midSum);
}
}
这个题用动态规划解是最简单的:
public class Solution {
public int maxSubArray(int[] A) {
int[] sum = new int[A.length];
int max = A[0];
sum[0] = A[0];
for (int i = 1; i < A.length; i++) {
sum[i] = Math.max(A[i], sum[i - 1] + A[i]);
max = Math.max(max, sum[i]);
}
return max;
}
}