【Leetcode】Wiggle Subsequence

本文介绍了一种求解最长摆动子序列问题的算法。该算法通过一次遍历输入序列,利用一个布尔变量来标记当前序列的趋势(上升或下降),从而达到O(n)的时间复杂度。文章还提供了详细的实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:https://leetcode.com/problems/wiggle-subsequence/

题目:
A sequence of numbers is called a wiggle sequence if the differences between successive numbers strictly alternate between positive and negative. The first difference (if one exists) may be either positive or negative. A sequence with fewer than two elements is trivially a wiggle sequence.

For example, [1,7,4,9,2,5] is a wiggle sequence because the differences (6,-3,5,-7,3) are alternately positive and negative. In contrast, [1,4,7,2,5] and [1,7,4,5,5] are not wiggle sequences, the first because its first two differences are positive and the second because its last difference is zero.

Given a sequence of integers, return the length of the longest subsequence that is a wiggle sequence. A subsequence is obtained by deleting some number of elements (eventually, also zero) from the original sequence, leaving the remaining elements in their original order.

Examples:
Input: [1,7,4,9,2,5]
Output: 6
The entire sequence is a wiggle sequence.

Input: [1,17,5,10,13,15,10,5,16,8]
Output: 7
There are several subsequences that achieve this length. One is [1,17,10,13,10,16,8].

Input: [1,2,3,4,5,6,7,8,9]
Output: 2
Follow up:
Can you do it in O(n) time?

思路:
贪心。。easy,要注意相等情况,当相等时,要用一个标记记录前面是递增的,还是递减的。

算法:

    public int wiggleMaxLength(int[] nums) {
        Boolean flag = null;//true为递增
        if (nums.length <= 1)
            return nums.length;
        int count = 1;

        for (int i = 1; i < nums.length; i++) {
            if(nums[i]>nums[i-1]){//递增
                if(flag==null){//前面全相等
                    count++;
                    flag = true;
                }else{//前面位递减时
                    if(flag==false){
                        count++;
                        flag = true;
                    }
                }
            }else if(nums[i]<nums[i-1]){//与上同理
                if(flag==null){
                    count++;
                    flag = false;
                }else{
                    if(flag==true){
                        count++;
                        flag = false;
                    }
                }
            }
        }
        return count;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值