UVA Problem E - Camel trading(栈和队列)

本文介绍了一个基于驼队交易背景的数学问题,旨在通过编写程序确定不含括号的算术表达式的最大和最小可能值。问题源自公元800年左右的一段历史故事,涉及加法和乘法运算,探讨了不同运算优先级下表达式的多种解释。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

Download as PDF

Problem E - Camel trading

Time Limit: 1 second

Background

Aroud 800 A.D., El Mamum, Calif of Baghdad was presented the formula 1+2*3*4+5, which had its origin in the financial accounts of a camel transaction. The formula lacked parenthesis and was ambiguous. So, he decided to ask savants to provide him with a method to find which interpretation is the most advantageous for him, depending on whether is is buying or selling the camels.

The Problem

You are commissioned by El Mamum to write a program that determines the maximum and minimum possible interpretation of a parenthesis-less expression.

Input

The input consists of an integer N, followed by N lines, each containing an expression. Each expression is composed of at most 12numbers, each ranging between 1 and 20, and separated by the sum and product operators + and *.

Output

For each given expression, the output will echo a line with the corresponding maximal and minimal interpretations, following the format given in the sample output.

Sample input

3
1+2*3*4+5
4*18+14+7*10
3+11+4*1*13*12*8+3*3+8

Sample output

The maximum and minimum are 81 and 30.
The maximum and minimum are 1560 and 156.
The maximum and minimum are 339768 and 5023.
 
     
    题意:求该算术式所能得到的最大最小值(区分在于括号再哪)

代码:
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<iostream>
#include<algorithm>
#include<queue>

using namespace std;

char a[1000100];

long long int min1;
long long int max1;

void minn()
{
    queue<long long int>q1;
    long long int num = 1;
    int p;
    long long int sum = 0;
    for(int i=0; a[i]!='\0'; i++)
    {
        if(a[i]>='0' && a[i]<='9')
        {
            long long int p = a[i] - '0';
            sum = sum * 10 + p;
        }
        else
        {
            if(a[i] == '+')
            {
                sum = sum * num;
                q1.push(sum);
                sum = 0;
                num = 1;
            }
            else if(a[i] == '*')
            {
                num = num * sum;
                sum = 0;
            }
        }
    }
    q1.push(sum*num);
    min1 = 0;
    while(!q1.empty())
    {
        num = q1.front();
        min1 = min1 + num;
        q1.pop();
    }
}

void maxx()
{
    queue<long long int>q2;
    long long int sum = 0;
    long long int num = 0;
    for(int i=0; a[i]!='\0'; i++)
    {
        if(a[i]>='0' && a[i]<='9')
        {
            long long int p = a[i] - '0';
            sum = sum *10 + p;
        }
        else
        {
            if(a[i] == '*')
            {
                sum = sum + num;
                q2.push(sum);
                sum = 0;
                num = 0;
            }
            else if(a[i] == '+')
            {
                num = num + sum;
                sum = 0;
            }
        }
    }
    q2.push(num+sum);
    max1 = 1;
    while(!q2.empty())
    {
        num = q2.front();
        max1 = max1 * num;
        q2.pop();
    }
}

int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        memset(a,0,sizeof(a));
        scanf("%s",a);
        minn();
        maxx();
        printf("The maximum and minimum are %lld and %lld.\n",max1,min1);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叶孤心丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值