POJ2387 Til the Cows Come Home(最短路模板题)

本篇介绍了一个寻找从牧场返回谷仓最短路径的问题,并提供了两种算法实现:贝尔曼福特算法和迪杰斯特拉算法。贝尔曼福特算法能够解决带有负权边的最短路径问题,而迪杰斯特拉算法适用于没有负权边的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Til the Cows Come Home
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 30659 Accepted: 10367

Description

Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible. 

Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it. 

Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

Input

* Line 1: Two integers: T and N 

* Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

Output

* Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

Sample Input

5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100

Sample Output

90

Hint

INPUT DETAILS: 

There are five landmarks. 

OUTPUT DETAILS: 

Bessie can get home by following trails 4, 3, 2, and 1.

Source




贝尔曼福特算法
#include<stdio.h>
#include<string.h>
#include<stdlib.h>

#define N 1010
#define INF 0x3f3f3f3f

struct node
{
    int x,y;
    int z;
}q[100010];
int n,m;
int t;
int num[N];

void add(int x,int y,int z)
{
    q[t].x = x;
    q[t].y = y;
    q[t++].z = z;
    q[t].y = x;
    q[t].x = y;
    q[t++].z = z;
}

void BF()
{
    for(int i=1;i<=n;i++)
    {
        num[i] = INF;
    }
    num[1] = 0;
    for(int i=1;i<n;i++)
    {
        int flag = 0;
        for(int j=0;j<t;j++)
        {
            if(num[q[j].y] > num[q[j].x] + q[j].z)
            {
                flag = 1;
                num[q[j].y] = num[q[j].x] + q[j].z;
            }
        }
        if(flag == 0)
        {
            break;
        }
    }
    printf("%d\n",num[n]);
}

int main()
{
    while(scanf("%d%d",&m,&n)!=EOF)
    {
        int x,y,z;
        t = 0;
        for(int i=1;i<=m;i++)
        {
            scanf("%d%d%d",&x,&y,&z);
            add(x,y,z);
        }
        BF();
    }
    return 0;
}






迪杰斯特拉算法
#include<iostream>
#include<string.h>
#include<stdlib.h>
#include<algorithm>

using namespace std;
const int N = 1010;
const int INF = 0x3f3f3f3f;

int map[N][N];
int num[N],v[N];
int n,m;

void dijkstra()
{
    int s = 1,e = n;
    for(int i=1;i<=n;i++)
    {
        v[i] = 0;
        num[i] = map[s][i];
    }
    num[s] = 0;
    for(int i=1;i<=n;i++)
    {
        int min = INF,k;
        for(int j=1;j<=n;j++)
        {
            if(v[j] == 0 && num[j]<min)
            {
                min = num[j];
                k = j;
            }
        }
        if(min == INF)
        {
            break;
        }
        v[k] = 1;
        for(int j=1;j<=n;j++)
        {
            if(v[j] == 0 && num[j] > num[k]+map[k][j])
            {
                num[j] = num[k] + map[k][j];
            }
        }
    }
    cout << num[e] << endl;
}

int main()
{
    while(cin >> m >> n)
    {
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                map[i][j] = INF;
            }
            map[i][i] = 0;
        }
        int x,y,z;
        for(int i=1;i<=m;i++)
        {
            cin >> x >> y >> z;
            if(map[x][y] > z)
            {
                map[x][y] = z;
                map[y][x] = z;
            }
        }
        dijkstra();
    }
    return 0;
}







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叶孤心丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值