POJ3259 Wormholes(BF)

探讨了在一个包含多个地点、路径及特殊虫洞的农场中,是否存在一条路径使得旅行者能够回到过去的时间点。通过构建图论模型并运用Bellman-Ford算法来检测是否存在负权回路,从而判断是否能实现时间倒流。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Wormholes
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 31457 Accepted: 11448

Description

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..NM (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input

Line 1: A single integer,  FF farm descriptions follow. 
Line 1 of each farm: Three space-separated integers respectively:  NM, and  W 
Lines 2.. M+1 of each farm: Three space-separated numbers ( SET) that describe, respectively: a bidirectional path between  S and  E that requires  T seconds to traverse. Two fields might be connected by more than one path. 
Lines  M+2.. M+ W+1 of each farm: Three space-separated numbers ( SET) that describe, respectively: A one way path from  S to  E that also moves the traveler back  T seconds.

Output

Lines 1.. F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).

Sample Input

2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8

Sample Output

NO
YES

Hint

For farm 1, FJ cannot travel back in time. 
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.

Source



题目大体意思    虫洞问题,现在有n个点,m条边,代表现在可以走的通路,比如从a到b和从b到a需要花费c时间,现在在地上出现了w个虫洞,虫洞的意义就是你从a到b话费的时间是-c(时间倒流,并且虫洞是单向的),现在问你从某个点开始走,能回到从前


就是求是否有负权环.

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<iostream>

using namespace std;
#define INF 0x3f3f3f3f

struct node
{
    int x,y,z;
}q[100010];

int n,m,k;
int t;
int num[100001];
void add(int x,int y,int z)
{
    q[t].x = x;
    q[t].y = y;
    q[t++].z = z;
    q[t].x = y;
    q[t].y = x;
    q[t++].z = z;
}

int BF()
{
    for(int i=0;i<=n+1;i++)
    {
        num[i] = INF;
    }
    num[0]=0;
    int flag = 0;
    for(int i=0;i<n-1;i++)
    {
        flag = 0;
        for(int j=0;j<t;j++)
        {
            if(num[q[j].y]>num[q[j].x] + q[j].z)
            {
                num[q[j].y] = num[q[j].x] + q[j].z;
                flag = 1;
            }
        }
        if(flag == 0)
        {
            break;
        }
    }
    for(int i=0;i<t;i++)
    {
        if(num[q[i].y]>num[q[i].x] + q[i].z)
        {
            return 1;
        }
    }
    return 0;
}

int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        t = 0;
        scanf("%d%d%d",&n,&m,&k);
        for(int i=0;i<m;i++)
        {
            int x, y,z;
            scanf("%d%d%d",&x,&y,&z);
            add(x,y,z);
        }
        for(int i=0;i<k;i++)
        {
            int x,y,z;
            scanf("%d%d%d",&x,&y,&z);
            q[t].x = x;
            q[t].y = y;
            q[t++].z = -z;
        }

        if(!BF())
        {
            cout << "NO" << endl;
        }
        else
        {
            cout << "YES" << endl;
        }
    }
    return 0;
}








评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叶孤心丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值