Greatest Number

本文介绍了一个数学游戏问题:从N个整数中选取不超过四个数(可以重复选取),使其和尽可能接近但不超过给定值M。文章提供了一种解决思路及示例程序,通过构建数组并使用二分查找的方法来高效求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Greatest Number

Time Limit: 1000MS Memory limit: 65536K

题目描述

Saya likes math, because she think math can make her cleverer.
One day, Kudo invited a very simple game:
Given N integers, then the players choose no more than four integers from them (can be repeated) and add them together. Finally, the one whose sum is the largest wins the game. It seems very simple, but there is one more condition: the sum shouldn’t larger than a number M.
Saya is very interest in this game. She says that since the number of integers is finite, we can enumerate all the selecting and find the largest sum. Saya calls the largest sum Greatest Number (GN). After reflecting for a while, Saya declares that she found the GN and shows her answer.
Kudo wants to know whether Saya’s answer is the best, so she comes to you for help.
Can you help her to compute the GN?

输入

The input consists of several test cases.
The first line of input in each test case contains two integers N (0<N≤1000) and M(0
 1000000000), which represent the number of integers and the upper bound.
Each of the next N lines contains the integers. (Not larger than 1000000000)
The last case is followed by a line containing two zeros.

输出

For each case, print the case number (1, 2 …) and the GN.
Your output format should imitate the sample output. Print a blank line after each test case.

示例输入

2 10
100
2

0 0

示例输出

Case 1: 8

提示

 给出n个数,从中找到4个或4个以内的数相加的和接近m(可以重复)
定义两个相同的数组,第一部分 a[0] = 0 ; 第二部分n个数,第三部分n个数任意两个相加的和,然后遍历其中一个,用二分的办法从第二个中找出和最接近m的 (保留和),最后得到最大的和

来源

 2010年山东省第一届ACM大学生程序设计竞赛

示例程序
[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
  1. #include <stdio.h>  
  2. #include <string.h>  
  3. #include <algorithm>  
  4. using namespace std;  
  5. int a[2000001];  
  6. int cmp(int x, int y)  
  7. {  
  8.     return x < y;  
  9. }  
  10. int main()  
  11. {  
  12.     int n, m, i, j, mid, l, h, k, max1, x, num=0, g, r, z;  
  13.     while(scanf("%d%d",&n,&m)!=EOF&&n)  
  14.     {  
  15.         k=0;  
  16.         num++;  
  17.         a[0]=0;  
  18.         for(i=1; i<=n; i++)  
  19.         {  
  20.             scanf("%d",&a[i]);  
  21.             {  
  22.                 if(a[i]>m)  
  23.                 {  
  24.                     i--;  
  25.                     n--;  
  26.                 }  
  27.             }  
  28.         }  
  29.         k=n+1;  
  30.         for(i=1; i<=n; i++)  
  31.         {  
  32.             for(j=i; j<=n; j++)  
  33.             {  
  34.                 if(a[i]+a[j]<=m)  
  35.                 {  
  36.                     a[k++]=a[i]+a[j];  
  37.                 }  
  38.             }  
  39.         }  
  40.         sort(a,a+k,cmp);  
  41.         r=k-1;  
  42.         g=k-1;  
  43.         max1=0;  
  44.         for(i=0; i<k; i++)  
  45.         {  
  46.             z=0;  
  47.             l=i;  
  48.             while(l<=r)  
  49.             {  
  50.                 mid=(l+r)/2;  
  51.                 x=a[i]+a[mid];  
  52.                 if(x>m)  
  53.                     r=mid-1;  
  54.                 else if(x==m)  
  55.                 {  
  56.                     max1=m;  
  57.                     z=1;  
  58.                     break;  
  59.                 }  
  60.                 else  
  61.                 {  
  62.                     l=mid+1;  
  63.                     if(max1<x)  
  64.                     {  
  65.                         g=mid;  
  66.                         max1=x;  
  67.                     }  
  68.                 }  
  69.             }  
  70.             if(z)  
  71.                 break;  
  72.             r=g;  
  73.         }  
  74.         printf("Case %d: %d\n\n",num, max1);  
  75.     }  
  76.     return 0;  
  77. }  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值