[Leetcode] 0035. 搜索插入位置

35. 搜索插入位置

题目描述

给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。

请必须使用时间复杂度为 O(log n) 的算法。

示例 1:

输入: nums = [1,3,5,6], target = 5
输出: 2

示例 2:

输入: nums = [1,3,5,6], target = 2
输出: 1

示例 3:

输入: nums = [1,3,5,6], target = 7
输出: 4

提示:

  • 1 <= nums.length <= 104
  • -104 <= nums[i] <= 104
  • nums 为 无重复元素 的 升序 排列数组
  • -104 <= target <= 104

解法

方法一:二分查找

思路与算法

假设题意是叫你在排序数组中寻找是否存在一个目标值,那么训练有素的读者肯定立马就能想到利用二分法在 \(O(\log n)\)的时间内找到是否存在目标值。但这题还多了个额外的条件,即如果不存在数组中的时候需要返回按顺序插入的位置,那我们还能用二分法么?答案是可以的,我们只需要稍作修改即可。

考虑这个插入的位置 \(pos\),它成立的条件为:

\(nums[pos−1]<target≤nums[pos]\)

其中 \(\textit{nums}\) 代表排序数组。由于如果存在这个目标值,我们返回的索引也是 \(\textit{pos}\),因此我们可以将两个条件合并得出最后的目标:在一个有序数组中找第一个大于等于 \(\textit{target}\) 的下标。

问题转化到这里,直接套用二分法即可,即不断用二分法逼近查找第一个大于等于 \(\textit{target}\) 的下标 。下文给出的代码是笔者习惯的二分写法,\(\textit{ans}\) 初值设置为数组长度可以省略边界条件的判断,因为存在一种情况是 \(\textit{target}\) 大于数组中的所有数,此时需要插入到数组长度的位置。

imgimgimgimgimgimgimgimg

Python3

class Solution:
    def searchInsert(self, nums: List[int], target: int) -> int:
        n = len(nums)
        left,right = 0,n-1
        ans = n
        while(left <= right):
            mid = ((right-left) >> 1) +left
            if(target<=nums[mid]):
                ans = mid
                right = mid - 1
            else:
                left = mid + 1
        print(ans,left)
        return ans
class Solution:
    def searchInsert(self, nums: List[int], target: int) -> int:
        return bisect_left(nums, target)

C++

class Solution {
public:
    int searchInsert(vector<int>& nums, int target) {
        int n = nums.size();
        int left= 0,right = n-1,ans = n;;
        while(left <=right){
            int mid = ((right-left) >> 1) +left;
            if(target <=nums[mid]){
                ans = mid;
                right = mid - 1;
            }
            else{
                left = mid + 1;
            }
        }
        return ans;
    }
};
class Solution {
public:
    int searchInsert(vector<int>& nums, int target) {
        return lower_bound(nums.begin(), nums.end(), target) - nums.begin();
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YEGE学AI算法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值