import os
import cv2
import numpy as np
from tqdm import tqdm
# 读取图片
# img = cv2.imread(r'D:\YWJ\6_jiaoben_set\huang_file1025\10_21_10.jpg')
img_path = r'C:\Users\yewenjing\Desktop\PF\new_64PF_img - 副本'
out_path1 = r'C:\Users\yewenjing\Desktop\PF\11'
# out_path2 = r'C:\Users\yewenjing\Desktop\PF\111'
# out_path3 = r'C:\Users\yewenjing\Desktop\1\3'
for fliename in tqdm(os.listdir(img_path)):
if fliename.endswith('.jpg'):
img = cv2.imread(os.path.join(img_path,fliename))
# CLAHE 处理
# clahe = cv2.createCLAHE(clipLimit=1, tileGridSize=(2,1)) # 设置 CLAHE 参数
clahe = cv2.createCLAHE(clipLimit=1, tileGridSize=(2,1)) # 设置 CLAHE 参数
img_clahe = clahe.apply(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)) # 转换为灰度图并应用 CLAHE
# 保存 CLAHE 处理后的图片
# cv2.imwrite('image_clahe.jpg', img_clahe)
cv2.imwrite(os.path.join(out_path1, fliename), img_clahe)
# 显示 CLAHE 处理后的图片
# cv2.imshow('CLAHE', img_clahe)
# cv2.waitKey(0)
# 锐化处理
# laplacian_kernel = np.array([[0, -1, 0],
# [-1, 5.5, -1],
# [0, -1, 0]])
# kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]]) # 设置卷积核
# img_sharp = cv2.filter2D(img_clahe, -1, laplacian_kernel)
# 保存锐化处理后的图片
# cv2.imwrite('image_sharp.jpg', img_sharp)
# cv2.imwrite(os.path.join(out_path2, fliename), img_sharp)
# 显示锐化处理后的图片
# cv2.imshow('Sharpen', img_sharp)
# cv2.waitKey(0)
#
# # 双边滤波处理
# img_bf = cv2.bilateralFilter(img_sharp, 40, 15, 30) # 设置双边滤波参数
#
# # 保存双边滤波处理后的图片
# # cv2.imwrite('image_bf.jpg', img_bf)
# cv2.imwrite(os.path.join(out_path3, fliename), img_bf)
else:
continue
print('done')
claeh局部直方图均衡化---锐化加强边缘信息---双边去噪