问题一
问题一要求对未来30天每天及每小时的货量进行预测。首先,利用混合ARIMA-LSTM模型进行时间序列预测。ARIMA模型擅长捕捉线性特征和趋势,而LSTM模型处理非线性关系和长期依赖。通过结合这两种模型,可以提高预测精度。具体步骤包括:
- 建立ARIMA模型,通过差分运算和ARMA模型组合来处理时间序列数据。
- 建立LSTM模型,利用其长短期记忆能力处理复杂的时间序列模式。
- 结合ARIMA和LSTM模型的预测结果,通过自适应混合算法调整权重,以提高预测准确性。


问题二
问题二要求在考虑运输线路改变的前提下,对未来30天每天及每小时的货量进行预测。解决方法涉及建立神经网络模型和聚类算法。具体步骤包括:
- 利用K-means算法对分拣中心的货量进行聚类,以理解不同类型货物的分布规律。
- 建立BP神经网络模型,通过特征选取和网络训练,预测货量变化。
- 基于聚类和BP神经网络的预测结果,分析运输线路变化对货量的影响,并通过回归图和折线图直观展示货量变化情况。

代码
混合ARIMA-LSTM模型构建
clc
clear
close all;
load('appendix1.mat') %读入附件1
mape_record = [];
W_record = [];
pre_record = [];
for c=1:size(appendix1,2) % 遍历每一个分拣中心
data = appendix1{
1,c}; %将分拣中心另存出来
train_num = 5; %用几期的值作为参考来训练权重
%% 下面是ARIMA计算权重
[y_train_ARIMA]=ARIMA(data(

该文章详细描述了如何运用混合ARIMA-LSTM模型进行货量预测,涉及ARIMA和LSTM模型的结合、权重计算以及在考虑线路变动时的神经网络和聚类策略。提供了一份包含完整数据和代码的示例。
最低0.47元/天 解锁文章
4661

被折叠的 条评论
为什么被折叠?



