1.背景
实际工程开发中,算法同学用python对训练模型后需要给Java后端调用,但一般的joblib.dump
保存的模型Java后端无法直接使用,因此借助专门的python模型保存库和对应的jar包,来进行模型的保存和读取。
2.具体实现方式
1.Python训练并保存模型
from sklearn2pmml import PMMLPipeline, sklearn2pmml
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=195, max_depth=14, max_features=11, oob_score=True,
random_state=123, n_jobs=-1, verbose=0)
pipeline_model = PMMLPipeline([("random_forest", model)])
pipeline_model.fit(train_x, train_y)
sklearn2pmml(pipeline_model, "./model/random_forest.pmml", with_repr=True)
2.Java读取模型
需要用到的依赖
<dependency>
<groupId>org.jpmml</groupId>
<artifactId>pmml-evaluator</artifactId>
<version>1.6.4</version>
</dependency >
具体实现调用代码
import org.dmg.pmml.Field;
import org.jpmml.model.*;
import org.jpmml.evaluator.*;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.util.*;
public class load_model {
public Evaluator load_pmml (String pmml_model_path) throws Exception{
Evaluator evaluator = new LoadingModelEvaluatorBuilder().load(new File(pmml_model_path)).build();
return evaluator;
}
public static Float accuracy(int tp, int tn, int fp, int fn){
float tp1 = (float) tp;
float tn1 = (float) tn;
float fp1 = (float) fp;
float fn1 = (float) fn;
return (tp1 + tn1)