https://codeforces.com/contest/999/problem/E
There are nn cities and mm roads in Berland. Each road connects a pair of cities. The roads in Berland are one-way.
What is the minimum number of new roads that need to be built to make all the cities reachable from the capital?
New roads will also be one-way.
Input
The first line of input consists of three integers nn, mm and ss (1≤n≤5000,0≤m≤5000,1≤s≤n1≤n≤5000,0≤m≤5000,1≤s≤n) — the number of cities, the number of roads and the index of the capital. Cities are indexed from 11 to nn.
The following mm lines contain roads: road ii is given as a pair of cities uiui, vivi (1≤ui,vi≤n1≤ui,vi≤n, ui≠viui≠vi). For each pair of cities (u,v)(u,v), there can be at most one road from uu to vv. Roads in opposite directions between a pair of cities are allowed (i.e. from uu to vv and from vv to uu).
Output
Print one integer — the minimum number of extra roads needed to make all the cities reachable from city ss. If all the cities are already reachable from ss, print 0.
Examples
input
Copy
9 9 1
1 2
1 3
2 3
1 5
5 6
6 1
1 8
9 8
7 1
output
Copy
3
input
Copy
5 4 5
1 2
2 3
3 4
4 1
output
Copy
1
用Tarjan分类对每个强连通分量缩点。
再计算入度为0的所点后的节点数-1.
import java.util.*;
import java.io.*;
public class Main {
public static void main(String args[]) {new Main().run();}
FastReader in = new FastReader();
PrintWriter out = new PrintWriter(System.out);
void run(){
work();
out.flush();
}
long mod=998244353;
long gcd(long a,long b) {
return a==0?b:gcd(b%a,a);
}
final long inf=Long.MAX_VALUE/3;
int[] label;
int[] pre;
int root;
int cur=1;
int[] color;
int[] degree;
int[] id;
ArrayList<Integer>[] graph;
Stack<Integer> stack;
void work(){
int n=ni(),m=ni();
root=ni()-1;
stack=new Stack<>();
label=new int[n];
pre=new int[n];
color=new int[n];
degree=new int[n];
id=new int[n];
graph=ng(n,m);
for(int i=0;i<n;i++){
if(color[i]==0){
dfs1(i);
}
}
int ret=-1;
boolean[] vis=new boolean[n];
for(int i=0;i<n;i++){
dfs2(i,vis);
}
for(int i=0;i<n;i++){
if(id[i]==i&°ree[i]==0){
ret++;
}
}
out.println(ret);
}
private void dfs2(int node, boolean[] vis) {
if(vis[node]){
return;
}
vis[node]=true;
for(int nn:graph[node]){
if(nn!=root){
if(id[node]!=id[nn]){
degree[id[nn]]++;
}
if(!vis[nn]){
dfs2(nn,vis);
}
}
}
}
private void dfs1(int node) {
stack.add(node);
label[node]=cur;
pre[node]=cur;
color[node]=1;
cur++;
for(int nn:graph[node]){
if(nn!=root&&color[nn]!=2){
if(color[nn]==0){
dfs1(nn);
}
pre[node]=Math.min(label[nn],pre[node]);
}
}
if(pre[node]==label[node]){
while(stack.size()>0&&pre[stack.peek()]>=label[node]){
int nn=stack.pop();
id[nn]=node;
}
}
color[node]=2;
}
//input
@SuppressWarnings("unused")
private ArrayList<Integer>[] ng(int n, int m) {
ArrayList<Integer>[] graph=(ArrayList<Integer>[])new ArrayList[n];
for(int i=0;i<n;i++) {
graph[i]=new ArrayList<>();
}
for(int i=1;i<=m;i++) {
int s=in.nextInt()-1,e=in.nextInt()-1;
graph[s].add(e);
// graph[e].add(s);
}
return graph;
}
private ArrayList<long[]>[] ngw(int n, int m) {
ArrayList<long[]>[] graph=(ArrayList<long[]>[])new ArrayList[n];
for(int i=0;i<n;i++) {
graph[i]=new ArrayList<>();
}
for(int i=1;i<=m;i++) {
long s=in.nextLong()-1,e=in.nextLong()-1,w=in.nextLong();
graph[(int)s].add(new long[] {e,w});
graph[(int)e].add(new long[] {s,w});
}
return graph;
}
private int ni() {
return in.nextInt();
}
private long nl() {
return in.nextLong();
}
private String ns() {
return in.next();
}
private long[] na(int n) {
long[] A=new long[n];
for(int i=0;i<n;i++) {
A[i]=in.nextLong();
}
return A;
}
private int[] nia(int n) {
int[] A=new int[n];
for(int i=0;i<n;i++) {
A[i]=in.nextInt();
}
return A;
}
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br=new BufferedReader(new InputStreamReader(System.in));
}
public String next()
{
while(st==null || !st.hasMoreElements())//回车,空行情况
{
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public int nextInt()
{
return Integer.parseInt(next());
}
public long nextLong()
{
return Long.parseLong(next());
}
}