E. Counting Arrays
time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output
You are given two positive integer numbers x and y. An array F is called an y-factorization of x iff the following conditions are met:
- There are y elements in F, and all of them are integer numbers;
.
You have to count the number of pairwise distinct arrays that are y-factorizations of x. Two arrays A and B are considered different iff there exists at least one index i (1 ≤ i ≤ y) such that Ai ≠ Bi. Since the answer can be very large, print it modulo 109 + 7.
Input
The first line contains one integer q (1 ≤ q ≤ 105) — the number of testcases to solve.
Then q lines follow, each containing two integers xi and yi (1 ≤ xi, yi ≤ 106). Each of these lines represents a testcase.
Output
Print q integers. i-th integer has to be equal to the number of yi-factorizations of xi modulo 109 + 7.
dp求每个数可以有多少因子组合。再排列组合位置,和正负号。效率不高,以后再优化。
import java.util.*;
import java.io.*;
public class Main {
public static void main(String args[]) {new Main().run();}
FastReader in = new FastReader();
PrintWriter out = new PrintWriter(System.out);
void run(){
work();
out.flush();
}
long mod=1000000007;
long gcd(long a,long b) {
return a==0?b:gcd(b%a,a);
}
long[] rec;
long[] rec2;
long[] pow2;
void work() {
rec=new long[1000001];
rec2=new long[1000001];
pow2=new long[1000001];
rec[0]=1;
rec2[0]=1;
pow2[0]=1;
for(int i=1;i<1000001;i++) {
rec[i]=(rec[i-1]*i)%mod;
rec2[i]=pow(rec[i],mod-2)%mod;
pow2[i]=(pow2[i-1]*2)%mod;
}
long[][] dp=new long[21][1000001];
dp[0][1]=1;
for(int i=0;i<20;i++) {
for(int j=1;j<1000001;j++) {
if(dp[i][j]==0)continue;
for(int k=2;k*j<1000001;k++) {
dp[i+1][k*j]+=dp[i][j];
dp[i+1][k*j]%=mod;
}
}
}
int q=ni();
for(int i=0;i<q;i++) {
int x=ni(),y=ni();
long ret=0;
for(int j=0;j<=Math.min(20, y);j++) {
if(dp[j][x]>0) {
ret+=dp[j][x]*C(j,y);
ret%=mod;
}
}
ret*=pow2[y-1];
ret%=mod;
out.println(ret);
}
}
private long C(int j, int y) {
// long a=rec[y]*pow((rec[j]*rec[y-j])%mod,mod-2);
long a=((rec[y]*rec2[j])%mod*rec2[y-j])%mod;
return a%mod;
}
private long pow(long a, long c) {
long r=1;
while(c>0) {
if(c%2==1) {
r*=a;
r%=mod;
}
c/=2;
a*=a;
a%=mod;
}
return r;
}
//input
private ArrayList<Integer>[] ng(int n, int m) {
ArrayList<Integer>[] graph=(ArrayList<Integer>[])new ArrayList[n];
for(int i=0;i<n;i++) {
graph[i]=new ArrayList<>();
}
for(int i=1;i<=m;i++) {
int s=in.nextInt()-1,e=in.nextInt()-1;
graph[s].add(e);
graph[e].add(s);
}
return graph;
}
private ArrayList<long[]>[] ngw(int n, int m) {
ArrayList<long[]>[] graph=(ArrayList<long[]>[])new ArrayList[n];
for(int i=0;i<n;i++) {
graph[i]=new ArrayList<>();
}
for(int i=1;i<=m;i++) {
long s=in.nextLong()-1,e=in.nextLong()-1,w=in.nextLong();
graph[(int)s].add(new long[] {e,w});
graph[(int)e].add(new long[] {s,w});
}
return graph;
}
private int ni() {
return in.nextInt();
}
private long nl() {
return in.nextLong();
}
private long[] na(int n) {
long[] A=new long[n];
for(int i=0;i<n;i++) {
A[i]=in.nextLong();
}
return A;
}
private int[] nia(int n) {
int[] A=new int[n];
for(int i=0;i<n;i++) {
A[i]=in.nextInt();
}
return A;
}
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br=new BufferedReader(new InputStreamReader(System.in));
}
public String next()
{
while(st==null || !st.hasMoreElements())//回车,空行情况
{
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public int nextInt()
{
return Integer.parseInt(next());
}
public long nextLong()
{
return Long.parseLong(next());
}
}