Codeforces707D. Persistent Bookcase

D. Persistent Bookcase

time limit per test

2 seconds

memory limit per test

512 megabytes

input

standard input

output

standard output

Recently in school Alina has learned what are the persistent data structures: they are data structures that always preserves the previous version of itself and access to it when it is modified.

After reaching home Alina decided to invent her own persistent data structure. Inventing didn't take long: there is a bookcase right behind her bed. Alina thinks that the bookcase is a good choice for a persistent data structure. Initially the bookcase is empty, thus there is no book at any position at any shelf.

The bookcase consists of n shelves, and each shelf has exactly m positions for books at it. Alina enumerates shelves by integers from 1to n and positions at shelves — from 1 to m. Initially the bookcase is empty, thus there is no book at any position at any shelf in it.

Alina wrote down q operations, which will be consecutively applied to the bookcase. Each of the operations has one of four types:

  • i j — Place a book at position j at shelf i if there is no book at it.
  • i j — Remove the book from position j at shelf i if there is a book at it.
  • i — Invert book placing at shelf i. This means that from every position at shelf i which has a book at it, the book should be removed, and at every position at shelf i which has not book at it, a book should be placed.
  • k — Return the books in the bookcase in a state they were after applying k-th operation. In particular, k = 0 means that the bookcase should be in initial state, thus every book in the bookcase should be removed from its position.

After applying each of operation Alina is interested in the number of books in the bookcase. Alina got 'A' in the school and had no problem finding this values. Will you do so?

Input

The first line of the input contains three integers nm and q (1 ≤ n, m ≤ 103, 1 ≤ q ≤ 105) — the bookcase dimensions and the number of operations respectively.

The next q lines describes operations in chronological order — i-th of them describes i-th operation in one of the four formats described in the statement.

It is guaranteed that shelf indices and position indices are correct, and in each of fourth-type operation the number k corresponds to some operation before it or equals to 0.

Output

For each operation, print the number of books in the bookcase after applying it in a separate line. The answers should be printed in chronological order.

Examples

input

Copy

2 3 3
1 1 1
3 2
4 0

output

Copy

1
4
0

input

Copy

4 2 6
3 2
2 2 2
3 3
3 2
2 2 2
3 2

output

Copy

2
1
3
3
2
4

input

Copy

2 2 2
3 2
2 2 1

output

Copy

2
1

 

思路:每一行建线段树,用于区间更新,离线处理查询次序。离线+dfs+线段树。

import java.util.*;
import java.io.*;

public class Main {
	public static void main(String args[]) {new Main().run();}

	FastReader in = new FastReader();
	PrintWriter out = new PrintWriter(System.out);
	void run(){
		work();
		out.flush();
	}
	long mod=1000000007;
	long gcd(long a,long b) {
		return a==0?b:b>=a?gcd(b%a,a):gcd(b,a);
	}
	ArrayList<Integer>[] graph;
	int[][] A;
	Node[] roots;
	int[][] Q;
	int[] ret;
	int sum;
	int n,m,q;
	void work() {
		n=in.nextInt();
		m=in.nextInt();
		q=in.nextInt();
		roots=new Node[n];
		graph=(ArrayList<Integer>[])new ArrayList[q+1];
		for(int i=0;i<=q;i++) {
			graph[i]=new ArrayList<>();
		}
		Q=new int[q+1][];
		Q[0]=new int[] {0};
		ret=new int[q+1];
		A=new int[n][m];
		int pre=0;
		for(int i=1;i<=q;i++) {
			int t=in.nextInt();
			if(t==1||t==2) {
				graph[pre].add(i);
				Q[i]=new int[] {t,in.nextInt()-1,in.nextInt()-1};
				pre++;
			}else if(t==3) {
				graph[pre].add(i);
				Q[i]=new int[] {t,in.nextInt()-1};
				pre++;
			}else {
				pre=in.nextInt();
				graph[pre].add(i);
				Q[i]=new int[] {t,pre};
				pre=i;
			}
		}
		for(int i=0;i<n;i++) {
			roots[i]=new Node();
		}
		dfs(0);
		for(int i=1;i<=q;i++) {
			out.println(ret[i]);
		}
	}
	private void dfs(int node) {
		int t=Q[node][0];
		boolean f=false;
		if(t==1) {
			int i=Q[node][1];
			int j=Q[node][2];
			if(query(roots[i],0,m-1,j,j)==0) {
				f=true;
				update(roots[i],0,m-1,j,1);
				sum++;
			}
		}else if(t==2) {
			int i=Q[node][1];
			int j=Q[node][2];
			if(query(roots[i],0,m-1,j,j)==1) {
				f=true;
				update(roots[i],0,m-1,j,-1);
				sum--;
			}
		}else if(t==3) {
			int i=Q[node][1];
			int pre=query(roots[i],0,m-1,0,m-1);
			update2(roots[i]);
			int cur=query(roots[i],0,m-1,0,m-1);
			sum+=cur-pre;
		}
		for(int nn:graph[node]) {
			dfs(nn);
		}
		ret[node]=sum;
		if(t==1) {
			int i=Q[node][1];
			int j=Q[node][2];
			if(f) {
				update(roots[i],0,m-1,j,-1);
				sum--;
			}
		}else if(t==2) {
			int i=Q[node][1];
			int j=Q[node][2];
			if(f) {
				update(roots[i],0,m-1,j,1);
				sum++;
			}
		}else if(t==3) {
			int i=Q[node][1];
			int pre=query(roots[i],0,m-1,0,m-1);
			update2(roots[i]);
			int cur=query(roots[i],0,m-1,0,m-1);
			sum+=cur-pre;
		}
	}
	private void update(Node node, int l, int r, int idx,int v) {
		updatelazy(node,l,r);
		if(l==r) {
			node.sum+=v;
			return;
		}
		int m=l+(r-l)/2;
		if(idx<=m) {
			update(getLnode(node),l,m,idx,v);
		}else {
			update(getRnode(node),m+1,r,idx,v);
		}
		updatelazy(getLnode(node),l,m);
		updatelazy(getRnode(node),m+1,r);
		node.sum=getLnode(node).sum+getRnode(node).sum;//左右节点可能有lazy标记
	}
	
	private void update2(Node node) {
		node.lazy^=1;
	}
	void updatelazy(Node node,int l,int r) {
		if(node.lazy==1) {
			node.sum=(r-l+1)-node.sum;
			node.lazy=0;
			if(l!=r) {
				getLnode(node).lazy^=1;
				getRnode(node).lazy^=1;
			}
		}
	}
	private int query(Node node, int l, int r, int s, int e) {
		updatelazy(node,l,r);
		if(s<=l&&r<=e) {
			return node.sum;
		}
		int m=l+(r-l)/2;
		int ret=0;
		if(m>=s) {
			ret+=query(getLnode(node),l,m,s,e);
		}
		if(m+1<=e) {
			ret+=query(getRnode(node),m+1,r,s,e);
		}
		return ret;
	}
	private Node getLnode(Node node) {
		if(node.lnode==null)node.lnode=new Node();
		return node.lnode;
	}
	private Node getRnode(Node node) {
		if(node.rnode==null)node.rnode=new Node();
		return node.rnode;
	}
	
	class Node{
		Node lnode,rnode;
		int sum,lazy;
	}
}	



class FastReader
{
	BufferedReader br;
	StringTokenizer st;

	public FastReader()
	{
		br=new BufferedReader(new InputStreamReader(System.in));
	}


	public String next() 
	{
		while(st==null || !st.hasMoreElements())//回车,空行情况
		{
			try {
				st = new StringTokenizer(br.readLine());
			} catch (IOException e) {
				e.printStackTrace();
			}
		}
		return st.nextToken();
	}

	public int nextInt() 
	{
		return Integer.parseInt(next());
	}

	public long nextLong()
	{
		return Long.parseLong(next());
	}
}

 

### Codeforces Div.2 比赛难度介绍 Codeforces Div.2 比赛主要面向的是具有基础编程技能到中级水平的选手。这类比赛通常吸引了大量来自全球不同背景的参赛者,包括大学生、高中生以及一些专业人士。 #### 参加资格 为了参加 Div.2 比赛,选手的评级应不超过 2099 分[^1]。这意味着该级别的竞赛适合那些已经掌握了一定算法知识并能熟练运用至少一种编程语言的人群参与挑战。 #### 题目设置 每场 Div.2 比赛一般会提供五至七道题目,在某些特殊情况下可能会更多或更少。这些题目按照预计解决难度递增排列: - **简单题(A, B 类型)**: 主要测试基本的数据结构操作和常见算法的应用能力;例如数组处理、字符串匹配等。 - **中等偏难题(C, D 类型)**: 开始涉及较为复杂的逻辑推理能力和特定领域内的高级技巧;比如图论中的最短路径计算或是动态规划入门应用实例。 - **高难度题(E及以上类型)**: 对于这些问题,则更加侧重考察深入理解复杂概念的能力,并能够灵活组合多种方法来解决问题;这往往需要较强的创造力与丰富的实践经验支持。 对于新手来说,建议先专注于理解和练习前几类较容易的问题,随着经验积累和技术提升再逐步尝试更高层次的任务。 ```cpp // 示例代码展示如何判断一个数是否为偶数 #include <iostream> using namespace std; bool is_even(int num){ return num % 2 == 0; } int main(){ int number = 4; // 测试数据 if(is_even(number)){ cout << "The given number is even."; }else{ cout << "The given number is odd."; } } ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值