There are N children standing in a line. Each child is assigned a rating value.
You are giving candies to these children subjected to the following requirements:
- Each child must have at least one candy.
- Children with a higher rating get more candies than their neighbors.
What is the minimum candies you must give?
思路分析:这题可以使用动态规划,基本思路就是进行两次扫描,一次从左往右,一次从右往左。第一次扫描的时候维护对于每一个小孩左边所需要最少的糖果数量,存入数组对应元素中,第二次扫描的时候维护右边所需的最少糖果数,并且比较将左边和右边大的糖果数量存入结果数组对应元素中。这样两遍扫描之后就可以得到每一个所需要的最少糖果量,从而累加得出结果,时间复杂度O(N),空间复杂度为O(N)。用一个具体的实例更方便理解(用实例理解算法是很有帮助的,多run实例)比如数组为 3 4 6 7 3 5则我们生成从左到右和从右到左的两个数组
3 4 6 7 3 5 4 5
1 2 3 4 1 2 1 2 从左向右 发现递增就+1,否则赋值为1
1 1 1 2 1 2 1 1 从右向左 发现递增就+1,否则赋值为1
1 2 3 4 1 2 1 2 取MAX 得到结果 最优糖果分配方案 求和得到糖果总数
AC Code
public class Solution {
public int candy(int[] ratings) {
//0127
if(ratings.length == 1) return 1;
int [] firstNum = new int [ratings.length];
firstNum[0] = 1;
for(int i = 0; i < ratings.length - 1; i++){
if(ratings[i+1] > ratings[i]){
firstNum[i+1] = firstNum[i] + 1;
} else {
firstNum[i+1] = 1;
}
}
int [] secondNum = new int [ratings.length];
secondNum[ratings.length - 1] = 1;
int candySum = Math.max(1, firstNum[ratings.length - 1]);
for(int i = ratings.length - 1; i > 0; i--){
if(ratings[i-1] > ratings[i]){
secondNum[i-1] = secondNum[i] + 1;
} else {
secondNum[i-1] = 1;
}
candySum += Math.max(secondNum[i - 1], firstNum[i - 1]);
}
return candySum;
}
}