from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import pandas as pd
def test_m():
data_url = "/data/workspace/myshixun/home/diabetes.csv"
df = pd.read_csv(data_url)
Xa = df.iloc[:,0:8]
ya = df.iloc[:,8]
X_train_1, X_test_1, y_train_1, y_test_1 = train_test_split(Xa, ya, test_size=0.2, random_state=0)
clf = MLPClassifier(solver='sgd', hidden_layer_sizes=(10, 5), random_state=1)
clf.fit(X_train_1, y_train_1)
return accuracy_score(y_train_1, clf.predict(X_train_1)), accuracy_score(y_test_1, clf.predict(X_test_1))
train_accuracy, test_accuracy = test_m()
print("训练集准确率:", train_accuracy)
print("测试集准确率:", test_accuracy)