Codeforces 380D Sereja and Cinema

本文解析了一道关于座位安排的问题,通过分析不同情况下的最优解策略,给出了具体的算法实现思路和代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        #223Div1的第四题,题意大致是一排n个座位,每个座位两侧有个电源(那么总共就是n+1个电源),每来一个人坐在某个位置上后,他就会占用这个座位两侧的电源,如果只剩一个可用就用一个,如果两个都被占了,他就会生气的离开,现在如果个别位置上的人是第几个入场确定的话,问如何安排省下位置上的人的进场顺序,可以使所有人都能有至少一个电源用而不至于生气的离开。

        这题一直没什么思路,昨天拿去问了下凡姐结果被她一晚上秒掉了......首先,如果不是第一个人的话,每个人入场后必须要坐在恰好一个人的旁边,这样才能使所有人都高兴,这个很好想,很面的话大致思路分两种情况,第一个人的位置确定还是不确定。首先把所有非0的情况读进来,用一个结构体存下他的位置和他是第几个进场的,然后按进场的优先级排个序,之后按这个序列来扩展,如果第一个人的位置确定的话,那么就直接从第1个人的位置开始扩展,维护一个区间l,r表示当前l,r已经坐满了人,如果下一个非零的入场顺序是k的话,就根据k的位置在这个区间在左边还是右边,用组合公式算出来从1开始入场到第k个人入场,这中间有多少种合法的入场方式,之后扩展l,r的范围。例如第二组样例1确定后,下一个是3,他的位置是2,此时l==r==3,3在区间的左边,可知1的左边已经没有位置,第二个入场的人只能坐到1的右边,那么此时可行的方案是C(3-1-1//中间有几个人入场,2-1-1//左边还剩0个空位)=1,之后扩展区间,2,3,4都坐满了人,所以l==2,r==4,然后扩展下一个非零的入场顺序。注意末尾要添加一个虚拟的rank n+1用来计算剩下的情况,这个位置在0或者在n+1无所谓了,因为无论左边还是右边,算出一边的情况另一边的情况就出来了.如果1的位置不确定的话,就枚举1在每一个位置的情况,求个和就好。具体实现看代码吧。

#include <cstdio>
#include <iostream>
#include <cmath>
#include <string>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long ll;
int n,m,tot;
const int MOD=1e9+7;
const int maxn=1e5+10;
ll fenzi[maxn];
ll fenmu[maxn];
ll ans;
ll pow_mod(ll a,ll b)
{
    ll ans=1;
    while(b)
    {
        if(b%2==1) ans=ans*a%MOD;
        a=a*a%MOD;
        b/=2;
    }
    return ans%MOD;
}
ll C(int a,int b)
{
    if(a<b) return 0;
    return (fenzi[a]*fenmu[b]%MOD)*fenmu[a-b]%MOD;
}

void init()
{
    fenzi[0]=1;
    fenmu[0]=1;
    for(int i=1;i<maxn;i++)
    {
        fenzi[i]=fenzi[i-1]*i%MOD;
        fenmu[i]=pow_mod(fenzi[i],MOD-2);
    }
}

struct node
{
    int pos,rank;
    bool operator<(const node &b)const
    {
        return rank<b.rank;
    }
}a[maxn];
void slove(int pos)
{
    int l=pos,r=pos;
    int i=0;
    if (a[i].rank==1) i++;
    int lastv=1;
    int tmp,len;
    ll ret=1;
    for (; i<tot; i++)
    {
        if (a[i].pos<l)
        {
            len=l-a[i].pos-1;//空位数
            tmp=a[i].rank-lastv-1;//两次的名次差
            if (tmp<len) return;
            ret=ret*C(tmp,len)%MOD;
            lastv=a[i].rank;
            l=a[i].pos;
            r+=(tmp-len);
        }
        else
        if (a[i].pos>r)
        {
            len=a[i].pos-r-1;
            tmp=a[i].rank-lastv-1;
            if (tmp<len) return;
            ret=ret*C(tmp,len)%MOD;
            lastv=a[i].rank;
            r=a[i].pos;
            l-=tmp-len;
        }
        else return;
    }
    ans+=ret;
    ans%=MOD;
}
int main()
{
//    freopen("in.txt","r",stdin);
    scanf("%d",&n);
    tot=0;
    int k;
    for (int i=1; i<=n; i++)
    {
        scanf("%d",&k);
        if (k)
        {
            a[tot].pos=i;
            a[tot].rank=k;
            tot++;
        }

    }
    if (tot==0)
    {
        printf("%I64d\n",pow_mod(2,n-1));
        return 0;
    }
    a[tot].pos=a[tot].rank=n+1;
    tot++;
    init();
    sort(a,a+tot);
    ans=0;
    if (a[0].rank==1)
    {
        slove(a[0].pos);
    }
    else
    {
        for (int i=1; i<=n; i++)
        slove(i);
    }
    printf("%I64d\n",ans);
}


### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值