HDU 5100 Chessboard (用k×1的矩形覆盖n×n的正方形)(找规律)

本文探讨了如何用k×1的矩形覆盖n×n的正方形棋盘,证明了无论n和k的值如何,未覆盖到的方格数m(n, k)总是一个完全平方数。通过分析不同情况,展示了当n≥k时如何达到最优覆盖方案,并给出具体案例和代码实现。" 86500059,8246684,使用悲观锁与乐观锁解决并发超发现象,"['并发控制', '数据库', 'Java开发', '锁机制', '分布式系统']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Chessboard

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 799    Accepted Submission(s): 335


Problem Description
Consider the problem of tiling an n×n chessboard by polyomino pieces that are k×1 in size; Every one of the k pieces of each polyomino tile must align exactly with one of the chessboard squares. Your task is to figure out the maximum number of chessboard squares tiled.
 

Input
There are multiple test cases in the input file.
First line contain the number of cases T ( T10000 ). 
In the next T lines contain T cases , Each case has two integers n and k. ( 1n,k100 )
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值