试除法求所有约数
vector<int> get_divisors(int x)
{
vector<int> res;
for (int i = 1; i <= x / i; i ++ )
if (x % i == 0)
{
res.push_back(i);
if (i != x / i) res.push_back(x / i);
}
sort(res.begin(), res.end());
return res;
}
约数个数和约数之和
正整数 N 能够被唯一分解为
约数个数:
约数之和:
#include <iostream>
#include <algorithm>
#include <unordered_map>
#include <vector>
using namespace std;
typedef long long LL;
const int N = 110, mod = 1e9 + 7;
int main()
{
int n;
cin >> n;
unordered_map<int, int> primes;
while (n -- )
{
int x;
cin >> x;
for (int i = 2; i <= x / i; i ++ )
while (x % i == 0)
{
x /= i;
primes[i] ++ ;
}
if (x > 1) primes[x] ++ ;
}
LL res = 1;
for (auto p : primes) res = res * (p.second + 1) % mod;
cout << res << endl;
return 0;
}
#include <iostream>
#include <algorithm>
#include <unordered_map>
#include <vector>
using namespace std;
typedef long long LL;
const int N = 110, mod = 1e9 + 7;
int main()
{
int n;
cin >> n;
unordered_map<int, int> primes;
while (n -- )
{
int x;
cin >> x;
for (int i = 2; i <= x / i; i ++ )
while (x % i == 0)
{
x /= i;
primes[i] ++ ;
}
if (x > 1) primes[x] ++ ;
}
LL res = 1;
for (auto p : primes)
{
LL a = p.first, b = p.second;
LL t = 1;
while (b -- ) t = (t * a + 1) % mod;
res = res * t % mod;
}
cout << res << endl;
return 0;
}
约数之和:
k 较小,但是 B 是5e7,遍历等比数组求和会超时。
可以分治来做:
例如,求 即 sum(p, k)
通用求等比数列和的方法
- 如果 k 为偶数,sum(p, k) =
=
=
- 如果 k 为奇数,sum(p, k) =
=
=
或者
#include <cstdio>
const int mod = 9901;
int qmi(int a, int k)
{
int res = 1;
a %= mod;
while (k)
{
if (k & 1) res = res * a % mod;
a = a * a % mod;
k >>= 1;
}
return res;
}
int sum(int p, int k)
{
if (k == 1) return 1;
if (k % 2 == 0) return (1 + qmi(p, k / 2)) * sum(p, k / 2) % mod;
return (sum(p, k - 1) + qmi(p, k - 1)) % mod;
}
int main()
{
int a, b;
scanf("%d%d", &a, &b);
int res = 1;
// 对a分解质因数
for (int i = 2; i * i <= a; i ++ )
if (a % i == 0)
{
int s = 0;
while (a % i == 0)
{
a /= i, s ++ ;
}
res = res * sum(i, b * s + 1) % mod;
}
if (a > 1) res = res * sum(a, b + 1) % mod;
if (a == 0) res = 0;
printf("%d\n", res);
return 0;
}
欧几里得算法 -- 最大公约数
int gcd(int a, int b)
{
return b ? gcd(b, a % b) : a;
}