Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 110252 Accepted Submission(s): 25443
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and
1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end
position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6
Author
Ignatius.L
我们用s[i] 表示a[i]的前i项和 ,s[i]=sum(a[k])(k=1,2,.....i)
然后遍历一遍s[],记录最小的s[i]值,存于min,那么最大子段和就是 max=Max(s[i]-min);
#include <iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
int a[100100],sum[100100];
int l,r,mins,minp,ans;
int main()
{
int t,i,k,n;
scanf("%d",&t);
for(k=1; k<=t; k++)
{
scanf("%d",&n);
memset(sum,0,sizeof sum);
for(i=1; i<=n; i++)
{
scanf("%d",&a[i]);
sum[i]=sum[i-1]+a[i];
}
l=r=minp=mins=0;
ans=0xcfcfcfcf;
for(i=1; i<=n; i++)
{
if(sum[i]-mins>ans)
{
ans=sum[i]-mins;
l=minp+1;
r=i;
}
if(sum[i]<mins)
{
mins=sum[i];
minp=i;
}
}
printf("Case %d:\n",k);
printf("%d %d %d\n",ans,l,r);
if(k!=t)
printf("\n");
}
return 0;
}