nowcoder 01背包

该博客介绍了经典的01背包问题,其中每个物品有特定的价值和重量。目标是在不超过背包承重的情况下,选择物品以最大化总价值。博主提供了思路和代码实现,包括动态规划的递推公式,并给出了测试样例及正确返回结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

一个背包有一定的承重cap,有N件物品,每件都有自己的价值,记录在数组v中,也都有自己的重量,记录在数组w中,每件物品只能选择要装入背包还是不装入背包,要求在不超过背包承重的前提下,选出物品的总价值最大。
给定物品的重量w价值v及物品数n和承重cap。请返回最大总价值。
测试样例:
[1,2,3],[1,2,3],3,6
返回:6

思路

f(i,j)=max{f(i1,jv[i])+p[i],f(i1,j)}

代码

class Backpack:
    def maxValue(self, w, v, n, cap):
        # write code here
        dp = [0 for i in range(cap + 1)]
        for i in range(n):
            for j in range(cap + 1)[::-1]:
                if j == 0:
                    dp[j] = 0
                elif i == 0:
                    dp[j] = v[i] if w[i] <= j else 0
                else:
                    dp[j] = max(dp[j - w[i]] + v[i], dp[j]) if j >= w[i] else dp[j]
        return dp[cap]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值