pytorch入门学习——构建简单cnn关于num_flat_features、x.size()[1:]的作用

pytorch入门学习——构建简单cnn关于num_flat_features、x.size()[1:]的作用

初次学习官方入门教程

初次学习,好多不懂,上网找到了这篇文章,解释得很好:
文章链接
torch.nn只接受mini-batch的输入,也就是说我们输入的时候是必须是好几张图片同时输入。

例如:nn. Conv2d 允许输入4维的Tensor:n个样本 x n个色彩频道 x 高度 x 宽度。

#coding=utf-8
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable

class Net(nn.Module):
    #定义Net的初始化函数,这个函数定义了该神经网络的基本结构
    def __init__(self):
        super(Net, self).__init__() #复制并使用Net的父类的初始化方法,即先运行nn.Module的初始化函数
        self.conv1 = nn.Conv2d(1, 6, 5) # 定义conv1函数的是图像卷积函数:输入为图像(1个频道,即灰度图),输出为 6张特征图, 卷积核为5x5正方形
        self.conv2 = nn.Conv2d(
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值