题目
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great"
:
great / \ gr eat / \ / \ g r e at / \ a t
To scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node "gr"
and swap its two children, it produces a scrambled string
"rgeat"
.
rgeat / \ rg eat / \ / \ r g e at / \ a t
We say that "rgeat"
is a scrambled string of "great"
.
Similarly, if we continue to swap the children of nodes "eat"
and
"at"
, it produces a scrambled string "rgtae"
.
rgtae / \ rg tae / \ / \ r g ta e / \ t a
We say that "rgtae"
is a scrambled string of "great"
.
Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.
将一个单词任意划分,构成任意棵树,交换任意位置;
如果可以构成后面的单词则称之为scramble。
可以注意到,在任意位置对数组进行划分后,无论如何交换,前后部分必然是分割开的。
对于这类问题dp。
通过一个flag[i][j][k]记录从s1[i]、s2[j]开始的两个长为k的序列是否是scramble。
由s1[i]、s2[j]开始的两个长为k的序列scramble的递归判断为:
1、flag[i][j][l]为true,且flag[i][j][k-l]为true,(l<=k,即前后有两个子串分别scramble)
或者
2、flag[i][j+k-l][l]为true,且flag[i+l][j][k-l]为true(即有交换后前后两个子串分别scramble)
自底向上dp即可。
代码:
class Solution {
public:
bool isScramble(string s1, string s2) {
if(s1.size()!=s2.size()) //先判断长度
return false;
int len=s1.size();
bool ***flag=new bool** [len]; //flag[i][j][k]表示从s1[i]、s2[j]开始的长度为k的序列是否符合要求
for(int i=0;i<len;i++) //初始化
{
flag[i]=new bool * [len];
for(int j=0;j<len;j++)
{
flag[i][j]=new bool [len+1];
for(int k=0;k<=len;k++)
flag[i][j][k]=false;
}
}
for(int k=1;k<=len;k++) //dp
for(int i=0;i<=len-k;i++)
for(int j=0;j<=len-k;j++)
if(k==1) //长度为1时判断是否相等
flag[i][j][k]=s1[i]==s2[j];
else //否则判断在任意位置断开后,前后部分是否都是scramble,或者交换后是scramble的
for(int l=1;l<k;l++)
if((flag[i][j][l]&&flag[i+l][j+l][k-l])||(flag[i][j+k-l][l]&&flag[i+l][j][k-l]))
{
flag[i][j][k]=true;
break;
}
return flag[0][0][len];
}
};