sklearn多元线性回归预测房价
多元线性回归
一.excel
import pandas as pd
import numpy as np
import math
import matplotlib.pyplot as plt # 画图
from sklearn import linear_model # 线性模型
data = pd.read_csv('D:/EdgeDownload/house_prices.csv') #读取数据
data.head() #数据展示
house_id | neighborhood | area | bedrooms | bathrooms | style | price |
---|---|---|---|---|---|---|
1112 | B | 1188 | 3 | 2 | ranch | 598291 |
491 | B | 3512 | 5 | 3 | victorian | 1744259 |
5952 | B | 1134 | 3 | 2 | ranch | 571669 |
3525 | A | 1940 | 4 | 2 | ranch | 493675 |
5108 | B | 2208 | 6 | 4 | victorian | 1101539 |
1.加入应用模型
# 应用模型
model = linear_model.LinearRegression()
model.fit(x_data, y_data)
print("回归系数:", model.coef_)
print("截距:"