"""Set of default prompts."""from llama_index.core.prompts.base import PromptTemplate
from llama_index.core.prompts.prompt_type import PromptType
############################################# Tree############################################
DEFAULT_SUMMARY_PROMPT_TMPL =("Write a summary of the following. Try to use only the ""information provided. ""Try to include as many key details as possible.\n""\n""\n""{context_str}\n""\n""\n"'SUMMARY:"""\n')
DEFAULT_SUMMARY_PROMPT = PromptTemplate(
DEFAULT_SUMMARY_PROMPT_TMPL, prompt_type=PromptType.SUMMARY
)# insert prompts
DEFAULT_INSERT_PROMPT_TMPL =("Context information is below. It is provided in a numbered list ""(1 to {num_chunks}), ""where each item in the list corresponds to a summary.\n""---------------------\n""{context_list}""---------------------\n""Given the context information, here is a new piece of ""information: {new_chunk_text}\n""Answer with the number corresponding to the summary that should be updated. ""The answer should be the number corresponding to the ""summary that is most relevant to the question.\n")
DEFAULT_INSERT_PROMPT = PromptTemplate(
DEFAULT_INSERT_PROMPT_TMPL, prompt_type=PromptType.TREE_INSERT
)# # single choice
DEFAULT_QUERY_PROMPT_TMPL =("Some choices are given below. It is provided in a numbered list ""(1 to {num_chunks}), ""where each item in the list corresponds to a summary.\n""---------------------\n""{context_list}""\n---------------------\n""Using only the choices above and not prior knowledge, return ""the choice that is most relevant to the question: '{query_str}'\n""Provide choice in the following format: 'ANSWER: <number>' and explain why ""this summary was selected in relation to the question.\n")
DEFAULT_QUERY_PROMPT = PromptTemplate(
DEFAULT_QUERY_PROMPT_TMPL, prompt_type=PromptType.TREE_SELECT
)# multiple choice
DEFAULT_QUERY_PROMPT_MULTIPLE_TMPL =("Some choices are given below. It is provided in a numbered ""list (1 to {num_chunks}), ""where each item in the list corresponds to a summary.\n""---------------------\n""{context_list}""\n---------------------\n""Using only the choices above and not prior knowledge, return the top choices ""(no more than {branching_factor}, ranked by most relevant to least) that ""are most relevant to the question: '{query_str}'\n""Provide choices in the following format: 'ANSWER: <numbers>' and explain why ""these summaries were selected in relation to the question.\n")
DEFAULT_QUERY_PROMPT_MULTIPLE = PromptTemplate(
DEFAULT_QUERY_PROMPT_MULTIPLE_TMPL, prompt_type=PromptType.TREE_SELECT_MULTIPLE
)
DEFAULT_REFINE_PROMPT_TMPL =("The original query is as follows: {query_str}\n""We have provided an existing answer: {existing_answer}\n""We have the opportunity to refine the existing answer ""(only if needed) with some more context below.\n""------------\n""{context_msg}\n""------------\n""Given the new context, refine the original answer to better ""answer the query. ""If the context isn't useful, return the original answer.\n""Refined Answer: ")
DEFAULT_REFINE_PROMPT = PromptTemplate(
DEFAULT_REFINE_PROMPT_TMPL, prompt_type=PromptType.REFINE
)
DEFAULT_TEXT_QA_PROMPT_TMPL =("Context information is below.\n""---------------------\n""{context_str}\n""---------------------\n""Given the context information and not prior knowledge, ""answer the query.\n""Query: {query_str}\n""Answer: ")
DEFAULT_TEXT_QA_PROMPT = PromptTemplate(
DEFAULT_TEXT_QA_PROMPT_TMPL, prompt_type=PromptType.QUESTION_ANSWER
)
DEFAULT_TREE_SUMMARIZE_TMPL =("Context information from multiple sources is below.\n""---------------------\n""{context_str}\n""---------------------\n""Given the information from multiple sources and not prior knowledge, ""answer the query.\n""Query: {query_str}\n""Answer: ")
DEFAULT_TREE_SUMMARIZE_PROMPT = PromptTemplate(
DEFAULT_TREE_SUMMARIZE_TMPL, prompt_type=PromptType.SUMMARY
)############################################# Keyword Table############################################
DEFAULT_KEYWORD_EXTRACT_TEMPLATE_TMPL =("Some text is provided below. Given the text, extract up to {max_keywords} ""keywords from the text. Avoid stopwords.""---------------------\n""{text}\n""---------------------\n""Provide keywords in the following comma-separated format: 'KEYWORDS: <keywords>'\n")
DEFAULT_KEYWORD_EXTRACT_TEMPLATE = PromptTemplate(
DEFAULT_KEYWORD_EXTRACT_TEMPLATE_TMPL, prompt_type=PromptType.KEYWORD_EXTRACT
)# NOTE: the keyword extraction for queries can be the same as# the one used to build the index, but here we tune it to see if performance is better.
DEFAULT_QUERY_KEYWORD_EXTRACT_TEMPLATE_TMPL =("A question is provided below. Given the question, extract up to {max_keywords} ""keywords from the text. Focus on extracting the keywords that we can use ""to best lookup answers to the question. Avoid stopwords.\n""---------------------\n""{question}\n""---------------------\n""Provide keywords in the following comma-separated format: 'KEYWORDS: <keywords>'\n")
DEFAULT_QUERY_KEYWORD_EXTRACT_TEMPLATE = PromptTemplate(
DEFAULT_QUERY_KEYWORD_EXTRACT_TEMPLATE_TMPL,
prompt_type=PromptType.QUERY_KEYWORD_EXTRACT,)############################################# Structured Store############################################
DEFAULT_SCHEMA_EXTRACT_TMPL =("We wish to extract relevant fields from an unstructured text chunk into ""a structured schema. We first provide the unstructured text, and then ""we provide the schema that we wish to extract. ""-----------text-----------\n""{text}\n""-----------schema-----------\n""{schema}\n""---------------------\n""Given the text and schema, extract the relevant fields from the text in ""the following format: ""field1: <value>\nfield2: <value>\n...\n\n""If a field is not present in the text, don't include it in the output.""If no fields are present in the text, return a blank string.\n""Fields: ")
DEFAULT_SCHEMA_EXTRACT_PROMPT = PromptTemplate(
DEFAULT_SCHEMA_EXTRACT_TMPL, prompt_type=PromptType.SCHEMA_EXTRACT
)# NOTE: taken from langchain and adapted# https://github.com/langchain-ai/langchain/blob/v0.0.303/libs/langchain/langchain/chains/sql_database/prompt.py
DEFAULT_TEXT_TO_SQL_TMPL =("Given an input question, first create a syntactically correct {dialect} ""query to run, then look at the results of the query and return the answer. ""You can order the results by a relevant column to return the most ""interesting examples in the database.\n\n""Never query for all the columns from a specific table, only ask for a ""few relevant columns given the question.\n\n""Pay attention to use only the column names that you can see in the schema ""description. ""Be careful to not query for columns that do not exist. ""Pay attention to which column is in which table. ""Also, qualify column names with the table name when needed. ""You are required to use the following format, each taking one line:\n\n""Question: Question here\n""SQLQuery: SQL Query to run\n""SQLResult: Result of the SQLQuery\n""Answer: Final answer here\n\n""Only use tables listed below.\n""{schema}\n\n""Question: {query_str}\n""SQLQuery: ")
DEFAULT_TEXT_TO_SQL_PROMPT = PromptTemplate(
DEFAULT_TEXT_TO_SQL_TMPL,
prompt_type=PromptType.TEXT_TO_SQL,)
DEFAULT_TEXT_TO_SQL_PGVECTOR_TMPL ="""\
Given an input question, first create a syntactically correct {dialect} \
query to run, then look at the results of the query and return the answer. \
You can order the results by a relevant column to return the most \
interesting examples in the database.
Pay attention to use only the column names that you can see in the schema \
description. Be careful to not query for columns that do not exist. \
Pay attention to which column is in which table. Also, qualify column names \
with the table name when needed.
IMPORTANT NOTE: you can use specialized pgvector syntax (`<->`) to do nearest \
neighbors/semantic search to a given vector from an embeddings column in the table. \
The embeddings value for a given row typically represents the semantic meaning of that row. \
The vector represents an embedding representation \
of the question, given below. Do NOT fill in the vector values directly, but rather specify a \
`[query_vector]` placeholder. For instance, some select statement examples below \
(the name of the embeddings column is `embedding`):
SELECT * FROM items ORDER BY embedding <-> '[query_vector]' LIMIT 5;
SELECT * FROM items WHERE id != 1 ORDER BY embedding <-> (SELECT embedding FROM items WHERE id = 1) LIMIT 5;
SELECT * FROM items WHERE embedding <-> '[query_vector]' < 5;
You are required to use the following format, \
each taking one line:
Question: Question here
SQLQuery: SQL Query to run
SQLResult: Result of the SQLQuery
Answer: Final answer here
Only use tables listed below.
{schema}
Question: {query_str}
SQLQuery: \
"""
DEFAULT_TEXT_TO_SQL_PGVECTOR_PROMPT = PromptTemplate(
DEFAULT_TEXT_TO_SQL_PGVECTOR_TMPL,
prompt_type=PromptType.TEXT_TO_SQL,)# NOTE: by partially filling schema, we can reduce to a QuestionAnswer prompt# that we can feed to ur table
DEFAULT_TABLE_CONTEXT_TMPL =("We have provided a table schema below. ""---------------------\n""{schema}\n""---------------------\n""We have also provided context information below. ""{context_str}\n""---------------------\n""Given the context information and the table schema, ""give a response to the following task: {query_str}")
DEFAULT_TABLE_CONTEXT_QUERY =("Provide a high-level description of the table, ""as well as a description of each column in the table. ""Provide answers in the following format:\n""TableDescription: <description>\n""Column1Description: <description>\n""Column2Description: <description>\n""...\n\n")
DEFAULT_TABLE_CONTEXT_PROMPT = PromptTemplate(
DEFAULT_TABLE_CONTEXT_TMPL, prompt_type=PromptType.TABLE_CONTEXT
)# NOTE: by partially filling schema, we can reduce to a refine prompt# that we can feed to ur table
DEFAULT_REFINE_TABLE_CONTEXT_TMPL =("We have provided a table schema below. ""---------------------\n""{schema}\n""---------------------\n""We have also provided some context information below. ""{context_msg}\n""---------------------\n""Given the context information and the table schema, ""give a response to the following task: {query_str}\n""We have provided an existing answer: {existing_answer}\n""Given the new context, refine the original answer to better ""answer the question. ""If the context isn't useful, return the original answer.")
DEFAULT_REFINE_TABLE_CONTEXT_PROMPT = PromptTemplate(
DEFAULT_REFINE_TABLE_CONTEXT_TMPL, prompt_type=PromptType.TABLE_CONTEXT
)############################################# Knowledge-Graph Table############################################
DEFAULT_KG_TRIPLET_EXTRACT_TMPL =("Some text is provided below. Given the text, extract up to ""{max_knowledge_triplets} ""knowledge triplets in the form of (subject, predicate, object). Avoid stopwords.\n""---------------------\n""Example:""Text: Alice is Bob's mother.""Triplets:\n(Alice, is mother of, Bob)\n""Text: Philz is a coffee shop founded in Berkeley in 1982.\n""Triplets:\n""(Philz, is, coffee shop)\n""(Philz, founded in, Berkeley)\n""(Philz, founded in, 1982)\n""---------------------\n""Text: {text}\n""Triplets:\n")
DEFAULT_KG_TRIPLET_EXTRACT_PROMPT = PromptTemplate(
DEFAULT_KG_TRIPLET_EXTRACT_TMPL,
prompt_type=PromptType.KNOWLEDGE_TRIPLET_EXTRACT,)
DEFAULT_DYNAMIC_EXTRACT_TMPL =("Extract up to {max_knowledge_triplets} knowledge triplets from the given text. ""Each triplet should be in the form of (head, relation, tail) with their respective types.\n""---------------------\n""INITIAL ONTOLOGY:\n""Entity Types: {allowed_entity_types}\n""Relation Types: {allowed_relation_types}\n""\n""Use these types as a starting point, but introduce new types if necessary based on the context.\n""\n""GUIDELINES:\n""- Output in JSON format: [{{'head': '', 'head_type': '', 'relation': '', 'tail': '', 'tail_type': ''}}]\n""- Use the most complete form for entities (e.g., 'United States of America' instead of 'USA')\n""- Keep entities concise (3-5 words max)\n""- Break down complex phrases into multiple triplets\n""- Ensure the knowledge graph is coherent and easily understandable\n""---------------------\n""EXAMPLE:\n""Text: Tim Cook, CEO of Apple Inc., announced the new Apple Watch that monitors heart health. ""UC Berkeley researchers studied the benefits of apples.\n""Output:\n""[{{'head': 'Tim Cook', 'head_type': 'PERSON', 'relation': 'CEO_OF', 'tail': 'Apple Inc.', 'tail_type': 'COMPANY'}},\n"" {{'head': 'Apple Inc.', 'head_type': 'COMPANY', 'relation': 'PRODUCES', 'tail': 'Apple Watch', 'tail_type': 'PRODUCT'}},\n"" {{'head': 'Apple Watch', 'head_type': 'PRODUCT', 'relation': 'MONITORS', 'tail': 'heart health', 'tail_type': 'HEALTH_METRIC'}},\n"" {{'head': 'UC Berkeley', 'head_type': 'UNIVERSITY', 'relation': 'STUDIES', 'tail': 'benefits of apples', 'tail_type': 'RESEARCH_TOPIC'}}]\n""---------------------\n""Text: {text}\n""Output:\n")
DEFAULT_DYNAMIC_EXTRACT_PROMPT = PromptTemplate(
DEFAULT_DYNAMIC_EXTRACT_TMPL, prompt_type=PromptType.KNOWLEDGE_TRIPLET_EXTRACT
)
DEFAULT_DYNAMIC_EXTRACT_PROPS_TMPL =("Extract up to {max_knowledge_triplets} knowledge triplets from the given text. ""Each triplet should be in the form of (head, relation, tail) with their respective types and properties.\n""---------------------\n""INITIAL ONTOLOGY:\n""Entity Types: {allowed_entity_types}\n""Entity Properties: {allowed_entity_properties}\n""Relation Types: {allowed_relation_types}\n""Relation Properties: {allowed_relation_properties}\n""\n""Use these types as a starting point, but introduce new types if necessary based on the context.\n""\n""GUIDELINES:\n""- Output in JSON format: [{{'head': '', 'head_type': '', 'head_props': {{...}}, 'relation': '', 'relation_props': {{...}}, 'tail': '', 'tail_type': '', 'tail_props': {{...}}}}]\n""- Use the most complete form for entities (e.g., 'United States of America' instead of 'USA')\n""- Keep entities concise (3-5 words max)\n""- Break down complex phrases into multiple triplets\n""- Ensure the knowledge graph is coherent and easily understandable\n""---------------------\n""EXAMPLE:\n""Text: Tim Cook, CEO of Apple Inc., announced the new Apple Watch that monitors heart health. ""UC Berkeley researchers studied the benefits of apples.\n""Output:\n""[{{'head': 'Tim Cook', 'head_type': 'PERSON', 'head_props': {{'prop1': 'val', ...}}, 'relation': 'CEO_OF', 'relation_props': {{'prop1': 'val', ...}}, 'tail': 'Apple Inc.', 'tail_type': 'COMPANY', 'tail_props': {{'prop1': 'val', ...}}}},\n"" {{'head': 'Apple Inc.', 'head_type': 'COMPANY', 'head_props': {{'prop1': 'val', ...}}, 'relation': 'PRODUCES', 'relation_props': {{'prop1': 'val', ...}}, 'tail': 'Apple Watch', 'tail_type': 'PRODUCT', 'tail_props': {{'prop1': 'val', ...}}}},\n"" {{'head': 'Apple Watch', 'head_type': 'PRODUCT', 'head_props': {{'prop1': 'val', ...}}, 'relation': 'MONITORS', 'relation_props': {{'prop1': 'val', ...}}, 'tail': 'heart health', 'tail_type': 'HEALTH_METRIC', 'tail_props': {{'prop1': 'val', ...}}}},\n"" {{'head': 'UC Berkeley', 'head_type': 'UNIVERSITY', 'head_props': {{'prop1': 'val', ...}}, 'relation': 'STUDIES', 'relation_props': {{'prop1': 'val', ...}}, 'tail': 'benefits of apples', 'tail_type': 'RESEARCH_TOPIC', 'tail_props': {{'prop1': 'val', ...}}}}]\n""---------------------\n""Text: {text}\n""Output:\n")
DEFAULT_DYNAMIC_EXTRACT_PROPS_PROMPT = PromptTemplate(
DEFAULT_DYNAMIC_EXTRACT_PROPS_TMPL, prompt_type=PromptType.KNOWLEDGE_TRIPLET_EXTRACT
)############################################# HYDE##############################################
HYDE_TMPL =("Please write a passage to answer the question\n""Try to include as many key details as possible.\n""\n""\n""{context_str}\n""\n""\n"'Passage:"""\n')
DEFAULT_HYDE_PROMPT = PromptTemplate(HYDE_TMPL, prompt_type=PromptType.SUMMARY)############################################# Simple Input############################################
DEFAULT_SIMPLE_INPUT_TMPL ="{query_str}"
DEFAULT_SIMPLE_INPUT_PROMPT = PromptTemplate(
DEFAULT_SIMPLE_INPUT_TMPL, prompt_type=PromptType.SIMPLE_INPUT
)############################################# JSON Path############################################
DEFAULT_JSON_PATH_TMPL =("We have provided a JSON schema below:\n""{schema}\n""Given a task, respond with a JSON Path query that ""can retrieve data from a JSON value that matches the schema.\n""Provide the JSON Path query in the following format: 'JSONPath: <JSONPath>'\n""You must include the value 'JSONPath:' before the provided JSON Path query.""Example Format:\n""Task: What is John's age?\n""Response: JSONPath: $.John.age\n""Let's try this now: \n\n""Task: {query_str}\n""Response: ")
DEFAULT_JSON_PATH_PROMPT = PromptTemplate(
DEFAULT_JSON_PATH_TMPL, prompt_type=PromptType.JSON_PATH
)############################################# Choice Select############################################
DEFAULT_CHOICE_SELECT_PROMPT_TMPL =("A list of documents is shown below. Each document has a number next to it along ""with a summary of the document. A question is also provided. \n""Respond with the numbers of the documents ""you should consult to answer the question, in order of relevance, as well \n""as the relevance score. The relevance score is a number from 1-10 based on ""how relevant you think the document is to the question.\n""Do not include any documents that are not relevant to the question. \n""Example format: \n""Document 1:\n<summary of document 1>\n\n""Document 2:\n<summary of document 2>\n\n""...\n\n""Document 10:\n<summary of document 10>\n\n""Question: <question>\n""Answer:\n""Doc: 9, Relevance: 7\n""Doc: 3, Relevance: 4\n""Doc: 7, Relevance: 3\n\n""Let's try this now: \n\n""{context_str}\n""Question: {query_str}\n""Answer:\n")
DEFAULT_CHOICE_SELECT_PROMPT = PromptTemplate(
DEFAULT_CHOICE_SELECT_PROMPT_TMPL, prompt_type=PromptType.CHOICE_SELECT
)############################################# RankGPT Rerank template############################################
RANKGPT_RERANK_PROMPT_TMPL =("Search Query: {query}. \nRank the {num} passages above ""based on their relevance to the search query. The passages ""should be listed in descending order using identifiers. ""The most relevant passages should be listed first. ""The output format should be [] > [], e.g., [1] > [2]. ""Only response the ranking results, ""do not say any word or explain.")
RANKGPT_RERANK_PROMPT = PromptTemplate(
RANKGPT_RERANK_PROMPT_TMPL, prompt_type=PromptType.RANKGPT_RERANK
)############################################# JSONalyze Query Template############################################
DEFAULT_JSONALYZE_PROMPT_TMPL =("You are given a table named: '{table_name}' with schema, ""generate SQLite SQL query to answer the given question.\n""Table schema:\n""{table_schema}\n""Question: {question}\n\n""SQLQuery: ")
DEFAULT_JSONALYZE_PROMPT = PromptTemplate(
DEFAULT_JSONALYZE_PROMPT_TMPL, prompt_type=PromptType.TEXT_TO_SQL
)