132 llamaindex所有默认提示 prompt

"""Set of default prompts."""

from llama_index.core.prompts.base import PromptTemplate
from llama_index.core.prompts.prompt_type import PromptType

############################################
# Tree
############################################

DEFAULT_SUMMARY_PROMPT_TMPL = (
    "Write a summary of the following. Try to use only the "
    "information provided. "
    "Try to include as many key details as possible.\n"
    "\n"
    "\n"
    "{context_str}\n"
    "\n"
    "\n"
    'SUMMARY:"""\n'
)

DEFAULT_SUMMARY_PROMPT = PromptTemplate(
    DEFAULT_SUMMARY_PROMPT_TMPL, prompt_type=PromptType.SUMMARY
)

# insert prompts
DEFAULT_INSERT_PROMPT_TMPL = (
    "Context information is below. It is provided in a numbered list "
    "(1 to {num_chunks}), "
    "where each item in the list corresponds to a summary.\n"
    "---------------------\n"
    "{context_list}"
    "---------------------\n"
    "Given the context information, here is a new piece of "
    "information: {new_chunk_text}\n"
    "Answer with the number corresponding to the summary that should be updated. "
    "The answer should be the number corresponding to the "
    "summary that is most relevant to the question.\n"
)
DEFAULT_INSERT_PROMPT = PromptTemplate(
    DEFAULT_INSERT_PROMPT_TMPL, prompt_type=PromptType.TREE_INSERT
)


# # single choice
DEFAULT_QUERY_PROMPT_TMPL = (
    "Some choices are given below. It is provided in a numbered list "
    "(1 to {num_chunks}), "
    "where each item in the list corresponds to a summary.\n"
    "---------------------\n"
    "{context_list}"
    "\n---------------------\n"
    "Using only the choices above and not prior knowledge, return "
    "the choice that is most relevant to the question: '{query_str}'\n"
    "Provide choice in the following format: 'ANSWER: <number>' and explain why "
    "this summary was selected in relation to the question.\n"
)
DEFAULT_QUERY_PROMPT = PromptTemplate(
    DEFAULT_QUERY_PROMPT_TMPL, prompt_type=PromptType.TREE_SELECT
)

# multiple choice
DEFAULT_QUERY_PROMPT_MULTIPLE_TMPL = (
    "Some choices are given below. It is provided in a numbered "
    "list (1 to {num_chunks}), "
    "where each item in the list corresponds to a summary.\n"
    "---------------------\n"
    "{context_list}"
    "\n---------------------\n"
    "Using only the choices above and not prior knowledge, return the top choices "
    "(no more than {branching_factor}, ranked by most relevant to least) that "
    "are most relevant to the question: '{query_str}'\n"
    "Provide choices in the following format: 'ANSWER: <numbers>' and explain why "
    "these summaries were selected in relation to the question.\n"
)
DEFAULT_QUERY_PROMPT_MULTIPLE = PromptTemplate(
    DEFAULT_QUERY_PROMPT_MULTIPLE_TMPL, prompt_type=PromptType.TREE_SELECT_MULTIPLE
)


DEFAULT_REFINE_PROMPT_TMPL = (
    "The original query is as follows: {query_str}\n"
    "We have provided an existing answer: {existing_answer}\n"
    "We have the opportunity to refine the existing answer "
    "(only if needed) with some more context below.\n"
    "------------\n"
    "{context_msg}\n"
    "------------\n"
    "Given the new context, refine the original answer to better "
    "answer the query. "
    "If the context isn't useful, return the original answer.\n"
    "Refined Answer: "
)
DEFAULT_REFINE_PROMPT = PromptTemplate(
    DEFAULT_REFINE_PROMPT_TMPL, prompt_type=PromptType.REFINE
)


DEFAULT_TEXT_QA_PROMPT_TMPL = (
    "Context information is below.\n"
    "---------------------\n"
    "{context_str}\n"
    "---------------------\n"
    "Given the context information and not prior knowledge, "
    "answer the query.\n"
    "Query: {query_str}\n"
    "Answer: "
)
DEFAULT_TEXT_QA_PROMPT = PromptTemplate(
    DEFAULT_TEXT_QA_PROMPT_TMPL, prompt_type=PromptType.QUESTION_ANSWER
)

DEFAULT_TREE_SUMMARIZE_TMPL = (
    "Context information from multiple sources is below.\n"
    "---------------------\n"
    "{context_str}\n"
    "---------------------\n"
    "Given the information from multiple sources and not prior knowledge, "
    "answer the query.\n"
    "Query: {query_str}\n"
    "Answer: "
)
DEFAULT_TREE_SUMMARIZE_PROMPT = PromptTemplate(
    DEFAULT_TREE_SUMMARIZE_TMPL, prompt_type=PromptType.SUMMARY
)


############################################
# Keyword Table
############################################

DEFAULT_KEYWORD_EXTRACT_TEMPLATE_TMPL = (
    "Some text is provided below. Given the text, extract up to {max_keywords} "
    "keywords from the text. Avoid stopwords."
    "---------------------\n"
    "{text}\n"
    "---------------------\n"
    "Provide keywords in the following comma-separated format: 'KEYWORDS: <keywords>'\n"
)
DEFAULT_KEYWORD_EXTRACT_TEMPLATE = PromptTemplate(
    DEFAULT_KEYWORD_EXTRACT_TEMPLATE_TMPL, prompt_type=PromptType.KEYWORD_EXTRACT
)


# NOTE: the keyword extraction for queries can be the same as
# the one used to build the index, but here we tune it to see if performance is better.
DEFAULT_QUERY_KEYWORD_EXTRACT_TEMPLATE_TMPL = (
    "A question is provided below. Given the question, extract up to {max_keywords} "
    "keywords from the text. Focus on extracting the keywords that we can use "
    "to best lookup answers to the question. Avoid stopwords.\n"
    "---------------------\n"
    "{question}\n"
    "---------------------\n"
    "Provide keywords in the following comma-separated format: 'KEYWORDS: <keywords>'\n"
)
DEFAULT_QUERY_KEYWORD_EXTRACT_TEMPLATE = PromptTemplate(
    DEFAULT_QUERY_KEYWORD_EXTRACT_TEMPLATE_TMPL,
    prompt_type=PromptType.QUERY_KEYWORD_EXTRACT,
)


############################################
# Structured Store
############################################

DEFAULT_SCHEMA_EXTRACT_TMPL = (
    "We wish to extract relevant fields from an unstructured text chunk into "
    "a structured schema. We first provide the unstructured text, and then "
    "we provide the schema that we wish to extract. "
    "-----------text-----------\n"
    "{text}\n"
    "-----------schema-----------\n"
    "{schema}\n"
    "---------------------\n"
    "Given the text and schema, extract the relevant fields from the text in "
    "the following format: "
    "field1: <value>\nfield2: <value>\n...\n\n"
    "If a field is not present in the text, don't include it in the output."
    "If no fields are present in the text, return a blank string.\n"
    "Fields: "
)
DEFAULT_SCHEMA_EXTRACT_PROMPT = PromptTemplate(
    DEFAULT_SCHEMA_EXTRACT_TMPL, prompt_type=PromptType.SCHEMA_EXTRACT
)

# NOTE: taken from langchain and adapted
# https://github.com/langchain-ai/langchain/blob/v0.0.303/libs/langchain/langchain/chains/sql_database/prompt.py
DEFAULT_TEXT_TO_SQL_TMPL = (
    "Given an input question, first create a syntactically correct {dialect} "
    "query to run, then look at the results of the query and return the answer. "
    "You can order the results by a relevant column to return the most "
    "interesting examples in the database.\n\n"
    "Never query for all the columns from a specific table, only ask for a "
    "few relevant columns given the question.\n\n"
    "Pay attention to use only the column names that you can see in the schema "
    "description. "
    "Be careful to not query for columns that do not exist. "
    "Pay attention to which column is in which table. "
    "Also, qualify column names with the table name when needed. "
    "You are required to use the following format, each taking one line:\n\n"
    "Question: Question here\n"
    "SQLQuery: SQL Query to run\n"
    "SQLResult: Result of the SQLQuery\n"
    "Answer: Final answer here\n\n"
    "Only use tables listed below.\n"
    "{schema}\n\n"
    "Question: {query_str}\n"
    "SQLQuery: "
)

DEFAULT_TEXT_TO_SQL_PROMPT = PromptTemplate(
    DEFAULT_TEXT_TO_SQL_TMPL,
    prompt_type=PromptType.TEXT_TO_SQL,
)

DEFAULT_TEXT_TO_SQL_PGVECTOR_TMPL = """\
Given an input question, first create a syntactically correct {dialect} \
query to run, then look at the results of the query and return the answer. \
You can order the results by a relevant column to return the most \
interesting examples in the database.

Pay attention to use only the column names that you can see in the schema \
description. Be careful to not query for columns that do not exist. \
Pay attention to which column is in which table. Also, qualify column names \
with the table name when needed.

IMPORTANT NOTE: you can use specialized pgvector syntax (`<->`) to do nearest \
neighbors/semantic search to a given vector from an embeddings column in the table. \
The embeddings value for a given row typically represents the semantic meaning of that row. \
The vector represents an embedding representation \
of the question, given below. Do NOT fill in the vector values directly, but rather specify a \
`[query_vector]` placeholder. For instance, some select statement examples below \
(the name of the embeddings column is `embedding`):
SELECT * FROM items ORDER BY embedding <-> '[query_vector]' LIMIT 5;
SELECT * FROM items WHERE id != 1 ORDER BY embedding <-> (SELECT embedding FROM items WHERE id = 1) LIMIT 5;
SELECT * FROM items WHERE embedding <-> '[query_vector]' < 5;

You are required to use the following format, \
each taking one line:

Question: Question here
SQLQuery: SQL Query to run
SQLResult: Result of the SQLQuery
Answer: Final answer here

Only use tables listed below.
{schema}


Question: {query_str}
SQLQuery: \
"""

DEFAULT_TEXT_TO_SQL_PGVECTOR_PROMPT = PromptTemplate(
    DEFAULT_TEXT_TO_SQL_PGVECTOR_TMPL,
    prompt_type=PromptType.TEXT_TO_SQL,
)


# NOTE: by partially filling schema, we can reduce to a QuestionAnswer prompt
# that we can feed to ur table
DEFAULT_TABLE_CONTEXT_TMPL = (
    "We have provided a table schema below. "
    "---------------------\n"
    "{schema}\n"
    "---------------------\n"
    "We have also provided context information below. "
    "{context_str}\n"
    "---------------------\n"
    "Given the context information and the table schema, "
    "give a response to the following task: {query_str}"
)

DEFAULT_TABLE_CONTEXT_QUERY = (
    "Provide a high-level description of the table, "
    "as well as a description of each column in the table. "
    "Provide answers in the following format:\n"
    "TableDescription: <description>\n"
    "Column1Description: <description>\n"
    "Column2Description: <description>\n"
    "...\n\n"
)

DEFAULT_TABLE_CONTEXT_PROMPT = PromptTemplate(
    DEFAULT_TABLE_CONTEXT_TMPL, prompt_type=PromptType.TABLE_CONTEXT
)

# NOTE: by partially filling schema, we can reduce to a refine prompt
# that we can feed to ur table
DEFAULT_REFINE_TABLE_CONTEXT_TMPL = (
    "We have provided a table schema below. "
    "---------------------\n"
    "{schema}\n"
    "---------------------\n"
    "We have also provided some context information below. "
    "{context_msg}\n"
    "---------------------\n"
    "Given the context information and the table schema, "
    "give a response to the following task: {query_str}\n"
    "We have provided an existing answer: {existing_answer}\n"
    "Given the new context, refine the original answer to better "
    "answer the question. "
    "If the context isn't useful, return the original answer."
)
DEFAULT_REFINE_TABLE_CONTEXT_PROMPT = PromptTemplate(
    DEFAULT_REFINE_TABLE_CONTEXT_TMPL, prompt_type=PromptType.TABLE_CONTEXT
)


############################################
# Knowledge-Graph Table
############################################

DEFAULT_KG_TRIPLET_EXTRACT_TMPL = (
    "Some text is provided below. Given the text, extract up to "
    "{max_knowledge_triplets} "
    "knowledge triplets in the form of (subject, predicate, object). Avoid stopwords.\n"
    "---------------------\n"
    "Example:"
    "Text: Alice is Bob's mother."
    "Triplets:\n(Alice, is mother of, Bob)\n"
    "Text: Philz is a coffee shop founded in Berkeley in 1982.\n"
    "Triplets:\n"
    "(Philz, is, coffee shop)\n"
    "(Philz, founded in, Berkeley)\n"
    "(Philz, founded in, 1982)\n"
    "---------------------\n"
    "Text: {text}\n"
    "Triplets:\n"
)
DEFAULT_KG_TRIPLET_EXTRACT_PROMPT = PromptTemplate(
    DEFAULT_KG_TRIPLET_EXTRACT_TMPL,
    prompt_type=PromptType.KNOWLEDGE_TRIPLET_EXTRACT,
)

DEFAULT_DYNAMIC_EXTRACT_TMPL = (
    "Extract up to {max_knowledge_triplets} knowledge triplets from the given text. "
    "Each triplet should be in the form of (head, relation, tail) with their respective types.\n"
    "---------------------\n"
    "INITIAL ONTOLOGY:\n"
    "Entity Types: {allowed_entity_types}\n"
    "Relation Types: {allowed_relation_types}\n"
    "\n"
    "Use these types as a starting point, but introduce new types if necessary based on the context.\n"
    "\n"
    "GUIDELINES:\n"
    "- Output in JSON format: [{{'head': '', 'head_type': '', 'relation': '', 'tail': '', 'tail_type': ''}}]\n"
    "- Use the most complete form for entities (e.g., 'United States of America' instead of 'USA')\n"
    "- Keep entities concise (3-5 words max)\n"
    "- Break down complex phrases into multiple triplets\n"
    "- Ensure the knowledge graph is coherent and easily understandable\n"
    "---------------------\n"
    "EXAMPLE:\n"
    "Text: Tim Cook, CEO of Apple Inc., announced the new Apple Watch that monitors heart health. "
    "UC Berkeley researchers studied the benefits of apples.\n"
    "Output:\n"
    "[{{'head': 'Tim Cook', 'head_type': 'PERSON', 'relation': 'CEO_OF', 'tail': 'Apple Inc.', 'tail_type': 'COMPANY'}},\n"
    " {{'head': 'Apple Inc.', 'head_type': 'COMPANY', 'relation': 'PRODUCES', 'tail': 'Apple Watch', 'tail_type': 'PRODUCT'}},\n"
    " {{'head': 'Apple Watch', 'head_type': 'PRODUCT', 'relation': 'MONITORS', 'tail': 'heart health', 'tail_type': 'HEALTH_METRIC'}},\n"
    " {{'head': 'UC Berkeley', 'head_type': 'UNIVERSITY', 'relation': 'STUDIES', 'tail': 'benefits of apples', 'tail_type': 'RESEARCH_TOPIC'}}]\n"
    "---------------------\n"
    "Text: {text}\n"
    "Output:\n"
)

DEFAULT_DYNAMIC_EXTRACT_PROMPT = PromptTemplate(
    DEFAULT_DYNAMIC_EXTRACT_TMPL, prompt_type=PromptType.KNOWLEDGE_TRIPLET_EXTRACT
)

DEFAULT_DYNAMIC_EXTRACT_PROPS_TMPL = (
    "Extract up to {max_knowledge_triplets} knowledge triplets from the given text. "
    "Each triplet should be in the form of (head, relation, tail) with their respective types and properties.\n"
    "---------------------\n"
    "INITIAL ONTOLOGY:\n"
    "Entity Types: {allowed_entity_types}\n"
    "Entity Properties: {allowed_entity_properties}\n"
    "Relation Types: {allowed_relation_types}\n"
    "Relation Properties: {allowed_relation_properties}\n"
    "\n"
    "Use these types as a starting point, but introduce new types if necessary based on the context.\n"
    "\n"
    "GUIDELINES:\n"
    "- Output in JSON format: [{{'head': '', 'head_type': '', 'head_props': {{...}}, 'relation': '', 'relation_props': {{...}}, 'tail': '', 'tail_type': '', 'tail_props': {{...}}}}]\n"
    "- Use the most complete form for entities (e.g., 'United States of America' instead of 'USA')\n"
    "- Keep entities concise (3-5 words max)\n"
    "- Break down complex phrases into multiple triplets\n"
    "- Ensure the knowledge graph is coherent and easily understandable\n"
    "---------------------\n"
    "EXAMPLE:\n"
    "Text: Tim Cook, CEO of Apple Inc., announced the new Apple Watch that monitors heart health. "
    "UC Berkeley researchers studied the benefits of apples.\n"
    "Output:\n"
    "[{{'head': 'Tim Cook', 'head_type': 'PERSON', 'head_props': {{'prop1': 'val', ...}}, 'relation': 'CEO_OF', 'relation_props': {{'prop1': 'val', ...}}, 'tail': 'Apple Inc.', 'tail_type': 'COMPANY', 'tail_props': {{'prop1': 'val', ...}}}},\n"
    " {{'head': 'Apple Inc.', 'head_type': 'COMPANY', 'head_props': {{'prop1': 'val', ...}}, 'relation': 'PRODUCES', 'relation_props': {{'prop1': 'val', ...}}, 'tail': 'Apple Watch', 'tail_type': 'PRODUCT', 'tail_props': {{'prop1': 'val', ...}}}},\n"
    " {{'head': 'Apple Watch', 'head_type': 'PRODUCT', 'head_props': {{'prop1': 'val', ...}}, 'relation': 'MONITORS', 'relation_props': {{'prop1': 'val', ...}}, 'tail': 'heart health', 'tail_type': 'HEALTH_METRIC', 'tail_props': {{'prop1': 'val', ...}}}},\n"
    " {{'head': 'UC Berkeley', 'head_type': 'UNIVERSITY', 'head_props': {{'prop1': 'val', ...}}, 'relation': 'STUDIES', 'relation_props': {{'prop1': 'val', ...}}, 'tail': 'benefits of apples', 'tail_type': 'RESEARCH_TOPIC', 'tail_props': {{'prop1': 'val', ...}}}}]\n"
    "---------------------\n"
    "Text: {text}\n"
    "Output:\n"
)

DEFAULT_DYNAMIC_EXTRACT_PROPS_PROMPT = PromptTemplate(
    DEFAULT_DYNAMIC_EXTRACT_PROPS_TMPL, prompt_type=PromptType.KNOWLEDGE_TRIPLET_EXTRACT
)

############################################
# HYDE
##############################################

HYDE_TMPL = (
    "Please write a passage to answer the question\n"
    "Try to include as many key details as possible.\n"
    "\n"
    "\n"
    "{context_str}\n"
    "\n"
    "\n"
    'Passage:"""\n'
)

DEFAULT_HYDE_PROMPT = PromptTemplate(HYDE_TMPL, prompt_type=PromptType.SUMMARY)


############################################
# Simple Input
############################################

DEFAULT_SIMPLE_INPUT_TMPL = "{query_str}"
DEFAULT_SIMPLE_INPUT_PROMPT = PromptTemplate(
    DEFAULT_SIMPLE_INPUT_TMPL, prompt_type=PromptType.SIMPLE_INPUT
)


############################################
# JSON Path
############################################

DEFAULT_JSON_PATH_TMPL = (
    "We have provided a JSON schema below:\n"
    "{schema}\n"
    "Given a task, respond with a JSON Path query that "
    "can retrieve data from a JSON value that matches the schema.\n"
    "Provide the JSON Path query in the following format: 'JSONPath: <JSONPath>'\n"
    "You must include the value 'JSONPath:' before the provided JSON Path query."
    "Example Format:\n"
    "Task: What is John's age?\n"
    "Response: JSONPath: $.John.age\n"
    "Let's try this now: \n\n"
    "Task: {query_str}\n"
    "Response: "
)

DEFAULT_JSON_PATH_PROMPT = PromptTemplate(
    DEFAULT_JSON_PATH_TMPL, prompt_type=PromptType.JSON_PATH
)


############################################
# Choice Select
############################################

DEFAULT_CHOICE_SELECT_PROMPT_TMPL = (
    "A list of documents is shown below. Each document has a number next to it along "
    "with a summary of the document. A question is also provided. \n"
    "Respond with the numbers of the documents "
    "you should consult to answer the question, in order of relevance, as well \n"
    "as the relevance score. The relevance score is a number from 1-10 based on "
    "how relevant you think the document is to the question.\n"
    "Do not include any documents that are not relevant to the question. \n"
    "Example format: \n"
    "Document 1:\n<summary of document 1>\n\n"
    "Document 2:\n<summary of document 2>\n\n"
    "...\n\n"
    "Document 10:\n<summary of document 10>\n\n"
    "Question: <question>\n"
    "Answer:\n"
    "Doc: 9, Relevance: 7\n"
    "Doc: 3, Relevance: 4\n"
    "Doc: 7, Relevance: 3\n\n"
    "Let's try this now: \n\n"
    "{context_str}\n"
    "Question: {query_str}\n"
    "Answer:\n"
)
DEFAULT_CHOICE_SELECT_PROMPT = PromptTemplate(
    DEFAULT_CHOICE_SELECT_PROMPT_TMPL, prompt_type=PromptType.CHOICE_SELECT
)


############################################
# RankGPT Rerank template
############################################

RANKGPT_RERANK_PROMPT_TMPL = (
    "Search Query: {query}. \nRank the {num} passages above "
    "based on their relevance to the search query. The passages "
    "should be listed in descending order using identifiers. "
    "The most relevant passages should be listed first. "
    "The output format should be [] > [], e.g., [1] > [2]. "
    "Only response the ranking results, "
    "do not say any word or explain."
)
RANKGPT_RERANK_PROMPT = PromptTemplate(
    RANKGPT_RERANK_PROMPT_TMPL, prompt_type=PromptType.RANKGPT_RERANK
)


############################################
# JSONalyze Query Template
############################################

DEFAULT_JSONALYZE_PROMPT_TMPL = (
    "You are given a table named: '{table_name}' with schema, "
    "generate SQLite SQL query to answer the given question.\n"
    "Table schema:\n"
    "{table_schema}\n"
    "Question: {question}\n\n"
    "SQLQuery: "
)

DEFAULT_JSONALYZE_PROMPT = PromptTemplate(
    DEFAULT_JSONALYZE_PROMPT_TMPL, prompt_type=PromptType.TEXT_TO_SQL
)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

需要重新演唱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值