【LeetCode热题100道笔记+动画】分割等和子集

题目描述

给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

示例 1:
输入:nums = [1,5,11,5]
输出:true
解释:数组可以分割成 [1, 5, 5] 和 [11] 。

示例 2:
输入:nums = [1,2,3,5]
输出:false
解释:数组不能分割成两个元素和相等的子集。

提示:

  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 100

思考

0-1背包问题的变形应用:将问题转化为"能否从数组中选取部分元素,使其和等于数组总和的一半"。通过动态规划求解,利用滚动数组优化空间复杂度。

算法过程

  1. 计算数组总和,若为奇数直接返回false(无法分割为两个等和子集)
  2. 定义目标容量volume = sum / 2,问题转化为"能否装满容量为volume的背包"
  3. 初始化dp数组:dp[j]表示能否组成和为j的子集,dp[0] = true(空子集)
  4. 遍历每个元素v:
    • 从大到小遍历容量j(避免重复使用同一元素)
    • 状态转移:dp[j] = dp[j] || dp[j - v](不选v或选v)
  5. 最终返回dp[volume](能否组成目标和)

时间复杂度

  • 时间复杂度:O(n×volume),n为数组长度,volume为总和的一半
  • 空间复杂度:O(volume),使用滚动数组优化,仅需一维数组存储状态

该方法通过动态规划高效解决子集分割问题,将0-1背包思想巧妙应用于子集和判断场景。

代码

/**
 * @param {number[]} nums
 * @return {boolean}
 */
var canPartition = function(nums) {
    const sum = nums.reduce((a, b) => a + b, 0);
    if (sum % 2 !== 0) return false; // 和为奇数时无法分割
    
    const volume = sum / 2;
    // dp[j]表示能否组成和为j的子集
    const dp = Array(volume + 1).fill(false); // 数组长度应为volume + 1
    dp[0] = true; // 基础情况:和为0可以通过空子集实现
    
    for (let v of nums) {
        // 从大到小遍历,避免重复使用同一个元素
        for (let j = volume; j >= v; j--) {
            // 状态转移:如果j-v可以组成,那么j也可以组成
            dp[j] = dp[j] || dp[j - v];
        }
    }
    
    return dp[volume];
};
    

可视化

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值