leetcode-032-62. 不同路径

本文探讨了如何使用组合数学方法解决机器人在网格中从左上角到右下角的不同路径问题。通过递推公式和阶乘计算,给出了一种简洁的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

 【图片】

示例 1:

输入:m = 3, n = 7
输出:28

示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向右 -> 向下
2. 向右 -> 向下 -> 向右
3. 向下 -> 向右 -> 向右

示例 3:

输入:m = 7, n = 3
输出:28

示例 4:

输入:m = 3, n = 3
输出:6

 

提示:

    1 <= m, n <= 100
    题目数据保证答案小于等于 2 * 109

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/unique-paths
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

题解给的是回溯法,但是我的是组合数学:

class Solution {
public:
    int uniquePaths(int m, int n) {
        m = m -1;
        n = n - 1;
        if(m == 0 || n == 0)
            return 1;
        int low = m + n;
        int up = min(m,n);

        long long ans = 1;
        for(int i = low, j=up; j>=1; j--,i--)
            ans = (long long) i  * ans;
        for(int i = up; i>=1; i--)
            ans = ans / i;
        return ans;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值