Blob 分析算法

原文:Blob分析算法
http://cvchina.net/thread-403-1-1.html

Blob分析(Blob Analysis)是对图像中相同像素的连通域进行分析,该连通域称为Blob。Blob分析可为机器视觉应用提供图像中的斑点的数量、位置、形状和方向,还可以提供相关斑点间的拓扑结构。Blob分析主要适用于以下图像:

二维目标图像,高对比度图像,存在/缺席检测,数量范围和旋转不变性需求。

1、图像分割(Image Segmentation)

因为Blob分析是一种对闭合目标形状进行分析处理的基本方法。在进行Blob分析以前,必须把图像分割为构成斑点(Blob)和局部背景的像素集合。B l o b分析一般从场景的灰度图像着手进行分析。在Blob分析以前,图像中的每一像素必须被指定为目标像素或背景像素。典型的目标像素被赋值为1,背景像素被赋值为0。有多种技术可将图像分割为目标像素和背景像素。这些技术包括:二元阈值(Binary Thresholding)、空间量化误差(Spatial~ mtization Error)、软件二元阈值和像素加权(SoftBinary Thresholding and Pixel Weighting)、相关阈值(Relative Thresholds)、阈值图像(Threshold Image)。

2、连通性分析(Connectivity Analysis)

当图像被分割为目标像素和背景像素后,必须进行连通性分析,以便将目标图像聚合为目标像素或斑点的连接体。连通性分析的三种类型如下:

Ø         全图像连通性分析(Whole Image ConnectivityAnalysis) 在全图像连通性分析中,被分割图像的所有的目标像素均被视为构成单一斑点的像素。即使斑点像素彼此并不相连,为了进行Blob分析,它们仍被视为单一的斑点。所有的Blob统计和测量均通过图像中的目标像素进行计算;

Ø         连接Blob分析(Connected Blob analysis) 连接Blob分析通过连通性标准,将图像中目标像素聚合为离散的斑点连接体。一般情况下,连接性分析通过连接所有邻近的目标像素构成斑点。不邻近的目标像素则不被视为是斑点的一部分;

Ø         标注连通性分析(Labeled Connectivity Analysis) 在机器视觉应用中, 由于所进行的图像处理过程不同,可能需对某些已被分割的图像进行Blob分析,而这些图像并未被分割为目标像素和背景像素。例如:图像可能被分为四个不同像素集合,每一集合代表不同的像素值范围。这类分割称为标注连通性分析。当对标注分割的图像进行连通性分析时,将连接所有具有同一标注的图像。标注连通分析不再有目标和背景的概念。

3、Blob工具

是用来从背景中分离出目标,并测量任意形状目标物的形态参数。这个处理过程,Blob并不是分析单个的像素,而是对图形的行进行操作。图像的每一行都用游程长度编码(RLE)来表示相邻的目标范围。这种方法与基于象素的算法相比,处理速度能够加快。为了适应各种不同的需求,Blob提供了很多过滤和分类模式来定义测量参数,而且有较好的操作性能。

4、分类器设计

检测目标需要进行分类,这就涉及到分类器的使用。使用SVM分类器可对检测出来的目标进行分类,在解决小样本、非线性及高维模式识别中表现出许多特有的优势。SVM方法是把样本点“升维”,即映射到高维甚至无穷维空间,再在高维空间中采用处理线性问题的方法。

SVM分类器有以下优点:

Ø         传统的统计方法只有在样本数趋向无穷大时其性能才有理论上的保证。对于应用中的有限样本难以取得理想的效果。SVM方法是一种小样本学习方法。

Ø         SVM可以给出学习结果的推广能力的界。

SVM是一种处理非线性分类和非线性回归的有效方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值