并发编程学习笔记(八)

Atomic原子操作类

在并发编程中很容易出现并发安全的问题,有一个很简单的例子就是多线程更新变量i=1,比如多个线程执行i++操作,就有可能获取不到正确的值,而这个问题,最常用的方法是通过Synchronized进行控制来达到线程安全的目的。但是由于synchronized是采用的是悲观锁策略,并不是特别高效的一种解决方案。实际上,在JUC下的atomic包提供了一系列的操作简单,性能高效,并能保证线程安全的类去更新基本类型变量,数组元素,引用类型以及更新对象中的字段类型。atomic包下的这些类都是采用的是乐观锁策略去原子更新数据,在java中则是使用CAS操作具体实现。

在java.util.concurrent.atomic包里提供了一组原子操作类:

基本类型: AtomicInteger、AtomicLong、AtomicBoolean;
引用类型:AtomicReference、AtomicStampedRerence、AtomicMarkableReference;
数组类型:AtomicIntegerArray、AtomicLongArray、AtomicReferenceArray
对象属性原子修改器:AtomicIntegerFieldUpdater、AtomicLongFieldUpdater、
AtomicReferenceFieldUpdater
原子类型累加器(jdk1.8增加的类):DoubleAccumulator、DoubleAdder、
LongAccumulator、LongAdder、Striped64


原子更新基本类型

以AtomicInteger为例总结常用的方法:

//以原子的方式将实例中的原值加1,返回的是自增前的旧值;
public final int getAndIncrement() {
    return unsafe.getAndAddInt(this, valueOffset, 1);
}
 
//getAndSet(int newValue):将实例中的值更新为新值,并返回旧值;
public final boolean getAndSet(boolean newValue) {
    boolean prev;
    do {
        prev = get();
    } while (!compareAndSet(prev, newValue));
    return prev;
}
 
//incrementAndGet() :以原子的方式将实例中的原值进行加1操作,并返回最终相加后的结果;
public final int incrementAndGet() {
    return unsafe.getAndAddInt(this, valueOffset, 1) + 1;
}
 
//addAndGet(int delta) :以原子方式将输入的数值与实例中原本的值相加,并返回最后的结果;
public final int addAndGet(int delta) {
    return unsafe.getAndAddInt(this, valueOffset, delta) + delta;

测试:

public class AtomicIntegerTest {
    static AtomicInteger sum = new AtomicInteger(0);

    public static void main(String[] args) {

        for (int i = 0; i < 10; i++) {
            Thread thread = new Thread(() -> {
                for (int j = 0; j < 10000; j++) {
                    // 原子自增  CAS
                    sum.incrementAndGet();
                    //TODO
                }
            });
            thread.start();
        }

        try {
            Thread.sleep(3000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println(sum.get());

    }

incrementAndGet()方法通过CAS自增实现,如果CAS失败,自旋直到成功+1。

在这里插入图片描述

原子更新数组类型

AtomicIntegerArray为例总结常用的方法

//addAndGet(int i, int delta):以原子更新的方式将数组中索引为i的元素与输入值相加;
public final int addAndGet(int i, int delta) {
    return getAndAdd(i, delta) + delta;
}
 
//getAndIncrement(int i):以原子更新的方式将数组中索引为i的元素自增加1;
public final int getAndIncrement(int i) {
    return getAndAdd(i, 1);
}
 
//compareAndSet(int i, int expect, int update):将数组中索引为i的位置的元素进行更新
public final boolean compareAndSet(int i, int expect, int update) {
    return compareAndSetRaw(checkedByteOffset(i), expect, update);

测试

public class AtomicIntegerArrayTest {

    static int[] value = new int[]{ 1, 2, 3, 4, 5 };
    static AtomicIntegerArray atomicIntegerArray = new AtomicIntegerArray(value);


    public static void main(String[] args) throws InterruptedException {

        //设置索引0的元素为100
        atomicIntegerArray.set(0, 100);
        System.out.println(atomicIntegerArray.get(0));
        //以原子更新的方式将数组中索引为1的元素与输入值相加
        atomicIntegerArray.getAndAdd(1,5);

        System.out.println(atomicIntegerArray);
    }

原子更新引用类型

AtomicReference作用是对普通对象的封装,它可以保证你在修改对象引用时的线程安全性。

public class AtomicReferenceTest {

    public static void main( String[] args ) {
        User user1 = new User("张三", 23);
        User user2 = new User("李四", 25);
        User user3 = new User("王五", 20);

        //初始化为 user1
        AtomicReference<User> atomicReference = new AtomicReference<>();
        atomicReference.set(user1);

        //把 user2 赋给 atomicReference
        atomicReference.compareAndSet(user1, user2);
        System.out.println(atomicReference.get());

        //把 user3 赋给 atomicReference
        atomicReference.compareAndSet(user1, user3);
        System.out.println(atomicReference.get());
        
    }

}


@Data
@AllArgsConstructor
class User {
    private String name;
    private Integer age;

对象属性原子修改器

AtomicIntegerFieldUpdater可以线程安全地更新对象中的整型变量。

public class AtomicIntegerFieldUpdaterTest {

    public static class Candidate {

        volatile int score = 0;

        AtomicInteger score2 = new AtomicInteger();
    }

    public static final AtomicIntegerFieldUpdater<Candidate> scoreUpdater =
            AtomicIntegerFieldUpdater.newUpdater(Candidate.class, "score");

    public static AtomicInteger realScore = new AtomicInteger(0);

    public static void main(String[] args) throws InterruptedException {

        final Candidate candidate = new Candidate();

        Thread[] t = new Thread[10000];
        for (int i = 0; i < 10000; i++) {
            t[i] = new Thread(new Runnable() {
                @Override
                public void run() {
                    if (Math.random() > 0.4) {
                        candidate.score2.incrementAndGet();
                        scoreUpdater.incrementAndGet(candidate);
                        realScore.incrementAndGet();
                    }
                }
            });
            t[i].start();
        }
        for (int i = 0; i < 10000; i++) {
            t[i].join();
        }
        System.out.println("AtomicIntegerFieldUpdater Score=" + candidate.score);
        System.out.println("AtomicInteger Score=" + candidate.score2.get());
        System.out.println("realScore=" + realScore.get());

    }

对于AtomicIntegerFieldUpdater 的使用稍微有一些限制和约束,约束如下:

(1)字段必须是volatile类型的,在线程之间共享变量时保证立即可见.eg:volatile int value = 3
(2)字段的描述类型(修饰符public/protected/default/private)与调用者与操作对象字段的关系一致。也就是说调用者能够直接操作对象字段,那么就可以反射进行原子操作。但是对于父类的字段,子类是不能直接操作的,尽管子类可以访问父类的字段。
(3)只能是实例变量,不能是类变量,也就是说不能加static关键字。
(4)只能是可修改变量,不能使final变量,因为final的语义就是不可修改。实际上final的语义和volatile是有冲突的,这两个关键字不能同时存在。
(5)对于AtomicIntegerFieldUpdater和AtomicLongFieldUpdater只能修改int/long类型的字段,不能修改其包装类型(Integer/Long)。如果要修改包装类型就需要使用AtomicReferenceFieldUpdater。


LongAdder/DoubleAdder详解

AtomicLong是利用了底层的CAS操作来提供并发性的,比如addAndGet方法:
在这里插入图片描述
在这里插入图片描述
上述方法调用了Unsafe类的getAndAddLong方法,该方法内部是个native方法,它的逻辑是采用自旋的方式不断更新目标值,直到更新成功。

在并发量较低的环境下,线程冲突的概率比较小,自旋的次数不会很多。但是,高并发环境下,N个线程同时进行自旋操作,会出现大量失败并不断自旋的情况,此时AtomicLong的自旋会成为瓶颈。

这就是LongAdder引入的初衷——解决高并发环境下AtomicInteger,AtomicLong的自旋瓶颈问题。

性能测试

public class LongAdderTest {

    public static void main(String[] args) {
        testAtomicLongVSLongAdder(10, 10000);
        System.out.println("==================");
        testAtomicLongVSLongAdder(10, 200000);
        System.out.println("==================");
        testAtomicLongVSLongAdder(100, 200000);
    }

    static void testAtomicLongVSLongAdder(final int threadCount, final int times) {
        try {
            long start = System.currentTimeMillis();
            testLongAdder(threadCount, times);
            long end = System.currentTimeMillis() - start;
            System.out.println("条件>>>>>>线程数:" + threadCount + ", 单线程操作计数" + times);
            System.out.println("结果>>>>>>LongAdder方式增加计数" + (threadCount * times) + "次,共计耗时:" + end);

            long start2 = System.currentTimeMillis();
            testAtomicLong(threadCount, times);
            long end2 = System.currentTimeMillis() - start2;
            System.out.println("条件>>>>>>线程数:" + threadCount + ", 单线程操作计数" + times);
            System.out.println("结果>>>>>>AtomicLong方式增加计数" + (threadCount * times) + "次,共计耗时:" + end2);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

    static void testAtomicLong(final int threadCount, final int times) throws InterruptedException {
        CountDownLatch countDownLatch = new CountDownLatch(threadCount);
        AtomicLong atomicLong = new AtomicLong();
        for (int i = 0; i < threadCount; i++) {
            new Thread(new Runnable() {
                @Override
                public void run() {
                    for (int j = 0; j < times; j++) {
                        atomicLong.incrementAndGet();
                    }
                    countDownLatch.countDown();
                }
            }, "my-thread" + i).start();
        }
        countDownLatch.await();
    }

    static void testLongAdder(final int threadCount, final int times) throws InterruptedException {
        CountDownLatch countDownLatch = new CountDownLatch(threadCount);
        LongAdder longAdder = new LongAdder();
        for (int i = 0; i < threadCount; i++) {
            new Thread(new Runnable() {
                @Override
                public void run() {
                    for (int j = 0; j < times; j++) {
                        longAdder.add(1);
                    }
                    countDownLatch.countDown();
                }
            }, "my-thread" + i).start();
        }

        countDownLatch.await();
    }

测试结果:线程数越多,并发操作数越大,LongAdder的优势越明显。

在这里插入图片描述

低并发、一般的业务场景下AtomicLong是足够了。如果并发量很多,存在大量写多读少的情况,那LongAdder可能更合适。

LongAdder原理

AtomicLong中有个内部变量value保存着实际的long值,所有的操作都是针对该变量进行。也就是说,高并发环境下,value变量其实是一个热点,也就是N个线程竞争一个热点。LongAdder的基本思路就是分散热点,将value值分散到一个数组中,不同线程会命中到数组的不同槽中,各个线程只对自己槽中的那个值进行CAS操作,这样热点就被分散了,冲突的概率就小很多。如果要获取真正的long值,只要将各个槽中的变量值累加返回。

在这里插入图片描述
LongAdder的内部结构

LongAdder内部有一个base变量,一个Cell[]数组:
base变量:非竞态条件下,直接累加到该变量上;
Cell[]数组:竞态条件下,累加个各个线程自己的槽Cell[i]中。

/** Number of CPUS, to place bound on table size */
// CPU核数,用来决定槽数组的大小
static final int NCPU = Runtime.getRuntime().availableProcessors();

/**
 * Table of cells. When non-null, size is a power of 2.
 */
 // 数组槽,大小为2的次幂
transient volatile Cell[] cells;

/**
 * Base value, used mainly when there is no contention, but also as
 * a fallback during table initialization races. Updated via CAS.
 */
 /**
 *  基数,在两种情况下会使用:
 *  1. 没有遇到并发竞争时,直接使用base累加数值
 *  2. 初始化cells数组时,必须要保证cells数组只能被初始化一次(即只有一个线程能对cells初始化),
 *  其他竞争失败的线程会讲数值累加到base上
 */
transient volatile long base;

/**
 * Spinlock (locked via CAS) used when resizing and/or creating Cells.
 */

定义了一个内部Cell类,这就是我们之前所说的槽,每个Cell对象存有一个value值,可以通过Unsafe来CAS操作它的值:

在这里插入图片描述

LongAdder#add方法
LongAdder#add方法的逻辑如下图:


在这里插入图片描述

只有从未出现过并发冲突的时候,base基数才会使用到,一旦出现了并发冲突,之后所有的操作都只针对Cell[]数组中的单元Cell。

如果Cell[]数组未初始化,会调用父类的longAccumelate去初始化Cell[],如果Cell[]已经初始化但是冲突发生在Cell单元内,则也调用父类的longAccumelate,此时可能就需要对Cell[]扩容了。

这也是LongAdder设计的精妙之处:尽量减少热点冲突,不到最后万不得已,尽量将CAS操作延迟。

嗨!很高兴回答你关于Java并发编程的问题。请问你想知道什么方面的内容呢?我可以分享一些学习笔记和建议给你。 1. 并发编程基础:了解并发编程的基本概念,如线程、进程、锁、同步等。学习Java中的并发编程模型以及相关的API,如Thread、Runnable、Lock、Condition等。 2. 线程安全性:学习如何保证多线程环境下的数据安全性,了解共享资源的问题以及如何使用同步机制来防止数据竞争和并发问题。 3. 线程间的通信:掌握线程间的通信方式,如使用wait/notify机制、Lock/Condition等来实现线程的协调与通信。 4. 并发容器:学习并发容器的使用,如ConcurrentHashMap、ConcurrentLinkedQueue等。了解它们的实现原理以及在多线程环境下的性能特点。 5. 并发工具类:熟悉Java提供的并发工具类,如CountDownLatch、CyclicBarrier、Semaphore等,它们可以帮助你更方便地实现线程间的协作。 6. 并发编程模式:学习一些常见的并发编程模式,如生产者-消费者模式、读者-写者模式、线程池模式等。了解这些模式的应用场景和实现方式。 7. 性能优化与调试:学习如何分析和调试多线程程序的性能问题,了解一些性能优化的技巧和工具,如使用线程池、减少锁竞争、避免死锁等。 这些只是一些基本的学习笔记和建议,Java并发编程是一个庞大而复杂的领域,需要不断的实践和深入学习才能掌握。希望对你有所帮助!如果你有更具体的问题,欢迎继续提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小军的编程之旅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值