机器学习算法(三):K近邻(k-nearest neighbors)初探
1 KNN的介绍和应用
1.1 KNN的介绍
kNN(k-nearest neighbors),中文翻译K近邻。我们常常听到一个故事:如果要了解一个人的经济水平,只需要知道他最好的5个朋友的经济能力,
对他的这五个人的经济水平求平均就是这个人的经济水平。这句话里面就包含着kNN的算法思想。

示例 :如上图,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果K=3,由于红色三角形所占比例为2/3,绿色圆将被赋予红色三角形那个类,如果K=5,由于蓝色四方形比例为3/5,因此绿色圆被赋予蓝色四方形类。
1) KNN建立过程
1 给定测试样本,计算它与训练集中的每一个样本的距离。
2 找出距离近期的K个训练样本。作为测试样本的近邻。
3 依据这K个近邻归属的类别来确定样本的类别。
2) 类别的判定
①投票决定,少数服从多数。取类别最多的为测试样本类别。
②加权投票法,依据计算得出距离的远近,对近邻的投票进行加权,距离越近则权重越大,设定权重为距离平方的倒数。
1.2 KNN的应用
KNN虽然很简单,但是人们常说"大道至简",一句"物以类聚,人以群分"就能揭开其面纱,看似简单的KNN即能做分类又能做回归,
还能用来做数据预处理的缺失值填充。由于KNN模型具有很好的解释性,一般情况下对于简单的机器学习问题,我们可以使用KNN作为
Baseline,对于每一个预测结果,我们可以很好的进行解释。推荐系统的中,也有着KNN的影子。例如文章推荐系统中,
对于一个用户A,我们可以把和A最相近的k个用户,浏览过的文章推送给A。
机器学习领域中,数据往往很重要,有句话叫做:“数据决定任务的上限, 模型的目标是无限接近这个上限”。
可以看到好的数据非常重要,但是由于各种原因,我们得到的数据是有缺失的,如果我们能够很好的填充这些缺失值,
就能够得到更好的数据,以至于训练出来更鲁棒的模型。接下来我们就来看看KNN如果做分类,怎么做回归以及怎么填充空值。
2 实验室手册
2.1 实验环境
1. python3.7
2. numpy >= '1.16.4'
3. sklearn >= '0.23.1'
2.2 学习目标
- 了解KNN怎么做分类问题
- 了解KNN如何做回归
- 了解KNN怎么做空值填充, 如何使用knn构建带有空值的pipeline
2.3 代码流程
-
二维数据集–knn分类
- Step1: 库函数导入
- Step2: 数据导入
- Step3: 模型训练&可视化
- Step4: 原理简析
-
莺尾花数据集–kNN分类
- Step1: 库函数导入
- Step2: 数据导入&分析
- Step3: 模型训练
- Step4: 模型预测&可视化
-
模拟数据集–kNN回归
- Step1: 库函数导入
- Step2: 数据导入&分析
- Step3: 模型训练&可视化
-
马绞痛数据–kNN数据预处理+kNN分类pipeline
- Step1: 库函数导入
- Step2: 数据导入&分析
- Step3: KNNImputer空值填充–使用和原理介绍
- Step4: KNNImputer空值填充–欧式距离的计算
- Step5: 基于pipeline模型预测&可视化
2.4 算法实战
2.4.1 Demo数据集–kNN分类
Step1: 库函数导入
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.neighbors import KNeighborsClassifier
from sklearn import datasets
Step2: 数据导入
# 使用莺尾花数据集的前两维数据,便于数据可视化
iris = datasets.load_iris()
X = iris.data[:, :2]
y = iris.target
Step3: 模型训练&可视化
k_list = [1, 3, 5, 8, 10, 15]
h = .02
# 创建不同颜色的画布
cmap_light = ListedColormap(['orange', 'cyan', 'cornflowerblue'])
cmap_bold = ListedColormap(['darkorange', 'c', 'darkblue'])
plt.figure(figsize=(15,14))
# 根据不同的k值进行可视化
for ind,k in enumerate(k_list):
clf = KNeighborsClassifier(k)
clf.fit(X, y)
# 画出决策边界
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
# 根据边界填充颜色
Z = Z.reshape(xx.shape)
plt.subplot(321+ind)
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
# 数据点可视化到画布
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold,
edgecolor='k', s=20)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.title("3-Class classification (k = %i)"% k)
plt.show()
Step4: 原理简析
如果选择较小的K值,就相当于用较小的领域中的训练实例进行预测,例如当k=1的时候,在分界点位置的数据很容易受到局部的影响,图中蓝色的部分中还有部分绿色块,主要是数据太局部敏感。当k=15的时候,不同的数据基本根据颜色分开,当时进行预测的时候,会直接落到对应的区域,模型相对更加鲁棒。
2.4.2 莺尾花数据集–kNN分类
Step1: 库函数导入
import numpy as np
# 加载莺尾花数据集
from sklearn import datasets
# 导入KNN分类器
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
Step2: 数据导入&分析
# 导入莺尾花数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target
# 得到训练集合和验证集合, 8: 2
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
Step3: 模型训练
这里我们设置参数k(n_neighbors)=5, 使用欧式距离(metric=minkowski & p=2)
# 训练模型
clf = KNeighborsClassifier(n_neighbors=5, p=2, metric="minkowski")
clf.fit(X_train, y_train)
KNeighborsClassifier()
Step4:模型预测&可视化
# 预测
X_pred = clf.predict(X_test)
acc = sum(X_pred == y_test) / X_pred.shape[0]
print("预测的准确率ACC: %.3f" % acc)
预测的准确率ACC: 0.933
我们用表格来看一下KNN的训练和预测过程。这里用表格进行可视化:
- 训练数据[表格对应list]
feat_1 | feat_2 | feat_3 | feat_4 | label |
---|---|---|---|---|
5.1 | 3.5 | 1.4 | 0.2 | 0 |
4.9 | 3. | 1.4 | 0.2 | 0 |
4.7 | 3.2 | 1.3 | 0.2 | 0 |
4.6 | 3.1 | 1.5 | 0.2 | 0 |
6.4 | 3.2 | 4.5 | 1.5 | 1 |
6.9 | 3.1 | 4.9 | 1.5 | 1 |
5.5 | 2.3 | 4. | 1.3 | 1 |
6.5 | 2.8 | 4.6 | 1.5 | 1 |
5.8 | 2.7 | 5.1 | 1.9 | 2 |
7.1 | 3. | 5.9 | 2.1 | 2 |
6.3 | 2.9 | 5.6 | 1.8 | 2 |
6.5 | 3. | 5.8 | 2.2 | 2 |
- knn.fit(X, y)的过程可以简单认为是表格存储
feat_1 | feat_2 | feat_3 | feat_4 | label |
---|---|---|---|---|
5.1 | 3.5 | 1.4 | 0.2 | 0 |
4.9 | 3. | 1.4 | 0.2 | 0 |
4.7 | 3.2 | 1.3 | 0.2 | 0 |
4.6 | 3.1 | 1.5 | 0.2 | 0 |
6.4 | 3.2 | 4.5 | 1.5 | 1 |
6.9 | 3.1 | 4.9 | 1.5 | 1 |
5.5 | 2.3 | 4. | 1.3 | 1 |
6.5 | 2.8 | 4.6 | 1.5 | 1 |
5.8 | 2.7 | 5.1 | 1.9 | 2 |
7.1 | 3. | 5.9 | 2.1 | 2 |
6.3 | 2.9 | 5.6 | 1.8 | 2 |
6.5 | 3. | 5.8 | 2.2 | 2 |
- knn.predict(x)预测过程会计算x和所有训练数据的距离
这里我们使用欧式距离进行计算, 预测过程如下
x = [ 5. , 3.6 , 1.4 , 0.2 ] y = 0 x = [5. , 3.6, 1.4, 0.2] \\ y=0 x=[5.,3.6,1.4,0.2]y=0
step1: 计算x和所有训练数据的距离
feat_1 | feat_2 | feat_3 | feat_4 | 距离 | label |
---|---|---|---|---|---|
5.1 | 3.5 | 1.4 | 0.2 | 0.14142136 | 0 |
4.9 | 3. | 1.4 | 0.2 | 0.60827625 | 0 |
4.7 | 3.2 | 1.3 | 0.2 | 0.50990195 | 0 |
4.6 | 3.1 | 1.5 | 0.2 | 0.64807407 | 0 |
6.4 | 3.2 | 4.5 | 1.5 | 3.66333182 | 1 |
6.9 | 3.1 | 4.9 | 1.5 | 4.21900462 | 1 |
5.5 | 2.3 | 4. | 1.3 | 3.14801525 | 1 |
6.5 | 2.8 | 4.6 | 1.5 | 3.84967531 | 1 |
5.8 | 2.7 | 5.1 | 1.9 | 4.24617475 | 2 |
7.1 | 3. | 5.9 | 2.1 | 5.35070089 | 2 |
6.3 | 2.9 | 5.6 | 1.8 | 4.73075047 | 2 |
6.5 | 3. | 5.8 | 2.2 | 5.09607692 | 2 |
step2: 根据距离进行编号排序
距离升序编号 | feat_1 | feat_2 | feat_3 | feat_4 | 距离 | label |
---|---|---|---|---|---|---|
1 | 5.1 | 3.5 | 1.4 | 0.2 | 0.14142136 | 0 |
3 | 4.9 | 3. | 1.4 | 0.2 | 0.60827625 | 0 |
2 | 4.7 | 3.2 | 1.3 | 0.2 | 0.50990195 | 0 |
4 | 4.6 | 3.1 | 1.5 | 0.2 | 0.64807407 | 0 |
6 | 6.4 | 3.2 | 4.5 | 1.5 | 3.66333182 | 1 |
8 | 6.9 | 3.1 | 4.9 | 1.5 | 4.21900462 | 1 |
5 | 5.5 | 2.3 | 4. | 1.3 | 3.14801525 | 1 |
7 | 6.5 | 2.8 | 4.6 | 1.5 | 3.84967531 | 1 |
9 | 5.8 | 2.7 | 5.1 | 1.9 | 4.24617475 | 2 |
12 | 7.1 | 3. | 5.9 | 2.1 | 5.35070089 | 2 |
10 | 6.3 | 2.9 | 5.6 | 1.8 | 4.73075047 | 2 |
11 | 6.5 | 3. | 5.8 | 2.2 | 5.09607692 | 2 |
step3: 我们设置k=5,选择距离最近的k个样本进行投票
距离升序编号 | feat_1 | feat_2 | feat_3 | feat_4 | 距离 | label |
---|---|---|---|---|---|---|
1 | 5.1 | 3.5 | 1.4 | 0.2 | 0.14142136 | 0 |
3 | 4.9 | 3. | 1.4 | 0.2 | 0.60827625 | 0 |
2 | 4.7 | 3.2 | 1.3 | 0.2 | 0.50990195 | 0 |
4 | 4.6 | 3.1 | 1.5 | 0.2 | 0.64807407 | 0 |
6 | 6.4 | 3.2 | 4.5 | 1.5 | 3.66333182 | 1 |
8 | 6.9 | 3.1 | 4.9 | 1.5 | 4.21900462 | 1 |
5 | 5.5 | 2.3 | 4. | 1.3 | 3.14801525 | 1 |
7 | 6.5 | 2.8 | 4.6 | 1.5 |