链接:http://poj.org/problem?id=1511
题意:
求从1出发到每个点,再从每个点出发到1的最短路
从1到每个点的最短路,用一次spfa就能求出来了,但是从每个点到1的就很难求
所以存了两幅图,一副是正常方向的图,一副是相反的逆图,再从1出发,求一次逆图的最短路
就可以求出从每个点到1的距离了
而且,因为这题数据比较大,所以我原本准备用vector来存边,结果会超时,所以从其他博客中学习,改用链表的形式来存边,能节省很多空间和时间
非常好的方法
代码:
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<string>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<ctime>
using namespace std;
const int INF = 1e9 + 9;
const int MAXN = 1000000 + 10;
int n, m;
struct node{
int to, l;
int next;
}edge[2][MAXN];//0是正向图,1是逆向图
bool vis[MAXN];
int d[MAXN];
int tol[2];
int head[2][MAXN];
void addedge(int s, int e, int l, int k)//用k标记是正图还是逆图
{
int &tot = tol[k];
edge[k][tot].to = e;
edge[k][tot].l = l;
edge[k][tot].next = head[k][s];
head[k][s] = tot++;
}
void Spfa(int st, int k)
{
int i;
for (i = 1; i <= n; i++)
{
d[i] = INF;
vis[i] = false;
}
d[st] = 0;
vis[st] = true;
queue<int> Q;
Q.push(st);
while (!Q.empty())
{
int start = Q.front();
Q.pop();
vis[start] = false;
for (i = head[k][start]; i != -1; i = edge[k][i].next)
{
if (d[start] + edge[k][i].l < d[edge[k][i].to])
{
d[edge[k][i].to] = d[start] + edge[k][i].l;
if (!vis[edge[k][i].to])
{
vis[edge[k][i].to] = true;
Q.push(edge[k][i].to);
}
}
}
}
}
int main()
{
// freopen("D://input.txt", "r", stdin);
// freopen("D://output.txt", "w", stdout);
int T;
scanf("%d", &T);
while (T--)
{
memset(head, -1, sizeof(head));
tol[0] = tol[1] = 0;//边数初始化为0
int i;
scanf("%d%d", &n, &m);
for (i = 0; i < m; i++)
{
int x, y, z;
scanf("%d%d%d", &x, &y, &z);
addedge(x, y, z, 0);
addedge(y, x, z, 1);
}
__int64 sum = 0;
Spfa(1, 0);
for (i = 1; i <= n; i++)
{
sum += d[i];
}
Spfa(1, 1);//两次spfa
for (i = 1; i <= n; i++)
{
sum += d[i];
}
printf("%I64d\n", sum);
}
// printf("\n%.3lf\n",clock()/CLOCKS_PER_SEC);
return 0;
}