Python | Pandas DataFrame.ix[ ]
Python 是进行数据分析的绝佳语言,主要是因为它拥有以数据为中心的Python软件包的出色生态系统。Pandas就是其中之一,它使导入和分析数据变得更加容易。
PandasDataFrame.ix[ ]既是基于标签的切片技术,也基于整数的切片技术。除了纯基于标签和基于整数之外,Pandas 还提供了一种使用ix[]运算符进行选择和子集化对象的混合方法。是最通用的索引器,将支持和ix[]中loc[]iloc[]的任何输入。
语法: DataFrame.ix[ ]
参数:
索引位置:整数或整数列表中行的索引位置。
索引标签:行的索引标签的字符串或字符串列表
返回:根据参数返回数据框或系列
代码 #1:
# importing pandas package import pandas as geek
# making data frame from csv file data = geek.read_csv("nba.csv")
# Integer slicing print("Slicing only rows(till index 4):") x1 = data.ix[:4, ] print(x1, "\n")
print("Slicing rows and columns(rows=4, col 1-4, excluding 4):") x2 = data.ix[:4, 1:4] print(x2) |
输出:
编辑
代码 #2:
# importing pandas package import pandas as geek
# making data frame from csv file data = geek.read_csv("nba.csv")
# Index slicing on Height column print("After index slicing:") x1 = data.ix[10:20, 'Height'] print(x1, "\n")
# Index slicing on Salary column x2 = data.ix[10:20, 'Salary'] print(x2) |
输出:
代码 #3:
# importing pandas and numpy import pandas as pd import numpy as np
df = pd.DataFrame(np.random.randn(10, 4), columns = ['A', 'B', 'C', 'D'])
print("Original DataFrame: \n" , df)
# Integer slicing print("\n Slicing only rows:") print("--------------------------") x1 = df.ix[:4, ] print(x1)
print("\n Slicing rows and columns:") print("----------------------------") x2 = df.ix[:4, 1:3] print(x2) |
输出:
代码 #4:
# importing pandas and numpy import pandas as pd import numpy as np
df = pd.DataFrame(np.random.randn(10, 4), columns = ['A', 'B', 'C', 'D'])
print("Original DataFrame: \n" , df)
# Integer slicing (printing all the rows of column 'A') print("\n After index slicing (On 'A'):") print("--------------------------") x = df.ix[:, 'A']
print(x) |
输出 :