CF1088F. Ehab and a weird weight formula
Solution
这题大概是个大力找性质题(莫名感觉学习文化课有利于找性质?!?)。
性质1:不难发现一个点比它权值小的有且仅有一个(最小权点除外)
性质2:我们把最小权点作为根,原树形成一个小根堆。
点和边都有贡献显然很难受。我们把点的贡献移到边上,于是边的贡献变成:
⌈
l
o
g
2
d
i
s
(
u
,
v
)
⌉
×
m
i
n
(
a
u
,
a
v
)
+
a
u
+
a
v
\lceil log_{2}{dis(u,v)}\rceil\times min(a_u,a_v)+a_u+a_v
⌈log2dis(u,v)⌉×min(au,av)+au+av
设一个点
x
x
x在原树上比它权值小的点编号为
i
d
x
id_x
idx。
性质3:新树上一个点只会选择权值比它小的点作为 f a t h e r father father。(不然还不如选 i d x id_x idx,贡献为 a i d x a_{id_x} aidx+ a x a_x ax)
性质4:因此设当前要选择 x x x在新树上的 f a t h e r father father,发现只可能在原树上 i d x id_x idx到根的路径上,也就是原树上 x x x的父亲到根的路径上(不然不如取这个点和 x x x的 L C A LCA LCA)。
然后对于形如 ⌈ l o g ( d i s ( x , y ) ) ⌉ \lceil log(dis(x,y))\rceil ⌈log(dis(x,y))⌉的式子,显然是把 x x x到根的链分成 O ( l o g ) O(log) O(log)段,每段的 ⌈ l o g ( d i s ( x , y ) ) ⌉ \lceil log(dis(x,y))\rceil ⌈log(dis(x,y))⌉相等,由于小根堆的性质,我们只会取每一段的最上面的点。
于是倍增维护一下祖先, O ( l o g n ) O(logn) O(logn)跳链即可。
总时间复杂度 O ( n l g n ) O(nlgn) O(nlgn)。
Code
#include <bits/stdc++.h>
using namespace std;
template<typename T> inline bool upmin(T &x, T y) { return y < x ? x = y, 1 : 0; }
template<typename T> inline bool upmax(T &x, T y) { return x < y ? x = y, 1 : 0; }
#define MP(A,B) make_pair(A,B)
#define PB(A) push_back(A)
#define SIZE(A) ((int)A.size())
#define LEN(A) ((int)A.length())
#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define fi first
#define se second
typedef long long ll;
typedef unsigned long long ull;
typedef long double lod;
typedef pair<int, int> PR;
typedef vector<int> VI;
const lod eps = 1e-9;
const lod pi = acos(-1);
const int oo = 1 << 30;
const ll loo = 1ll << 60;
const int mods = 998244353;
const int inv2 = (mods + 1) >> 1;
const int MAXN = 300005;
const int INF = 0x3f3f3f3f; //1061109567
/*--------------------------------------------------------------------*/
namespace FastIO{
constexpr int SIZE = (1 << 21) + 1;
int num = 0, f;
char ibuf[SIZE], obuf[SIZE], que[65], *iS, *iT, *oS = obuf, *oT = obuf + SIZE - 1, c;
#define gc() (iS == iT ? (iT = ((iS = ibuf) + fread(ibuf, 1, SIZE, stdin)), (iS == iT ? EOF : *iS ++)) : *iS ++)
inline void flush() {
fwrite(obuf, 1, oS - obuf, stdout);
oS = obuf;
}
inline void putc(char c) {
*oS ++ = c;
if (oS == oT) flush();
}
inline void getc(char &c) {
for (c = gc(); !isdigit(c) && c != EOF; c = gc());
}
inline void reads(char *st) {
char c;
int n = 0;
getc(st[++ n]);
for (c = gc(); isdigit(c) ; c = gc()) st[++ n] = c;
st[n + 1] = '\0';
}
template<class I>
inline void read(I &x) {
for (f = 1, c = gc(); c < '0' || c > '9' ; c = gc()) if (c == '-') f = -1;
for (x = 0; c >= '0' && c <= '9' ; c = gc()) x = (x << 3) + (x << 1) + (c & 15);
x *= f;
}
template<class I>
inline void print(I x) {
if (x < 0) putc('-'), x = -x;
if (!x) putc('0');
while (x) que[++ num] = x % 10 + 48, x /= 10;
while (num) putc(que[num --]);
}
struct Flusher_{~Flusher_(){flush();}} io_Flusher_;
}
using FastIO :: read;
using FastIO :: putc;
using FastIO :: reads;
using FastIO :: print;
ll ans = 0;
vector<int> e[MAXN];
int dep[MAXN], Log[MAXN], a[MAXN], fa[MAXN][20], id, n;
void dfs(int x, int father) {
dep[x] = dep[father] + 1, fa[x][0] = father;
for (int i = 1; i <= Log[dep[x]] ; ++ i) fa[x][i] = fa[fa[x][i - 1]][i - 1];
for (auto v : e[x]) {
if (v == father) continue;
dfs(v, x);
}
if (father) {
ll mn = 1ll * (Log[dep[x]] + 1) * a[id] + a[id] + a[x];
for (int i = 0; i <= Log[dep[x]] ; ++ i) upmin(mn, 1ll * min(a[x], a[fa[x][i]]) * i + a[x] + a[fa[x][i]]);
ans += mn;
}
}
signed main() {
#ifndef ONLINE_JUDGE
freopen("a.in", "r", stdin);
#endif
read(n);
Log[1] = 0, dep[0] = -1, id = 1;
for (int i = 2; i <= n ; ++ i) Log[i] = Log[i >> 1] + 1;
for (int i = 1; i <= n ; ++ i) {
read(a[i]);
if (a[i] < a[id]) id = i;
}
for (int i = 1, u, v; i < n ; ++ i) read(u), read(v), e[u].PB(v), e[v].PB(u);
dfs(id, 0);
print(ans);
return 0;
}