2019 ICPC World Finals Problem J. Miniature Golf
Solution
设 l l l为 l 0 l_0 l0时 i i i的总分为 s i , l 0 s_{i,l_0} si,l0, s i , l 0 = ∑ k m i n ( a i , k , l 0 ) s_{i,l_0}=\sum_k min(a_{i,k},l_0) si,l0=∑kmin(ai,k,l0),让 l l l从小到大依次变化,可以发现 s i , l s_{i,l} si,l表现为一个斜率非负的上凸壳(上凸壳的左边一半), Δ l = s i , l + 1 − s i , l = ∑ k [ a i , k > l ] \Delta_l=s_{i,l+1}-s_{i,l}=\sum_k [a_{i,k}>l] Δl=si,l+1−si,l=∑k[ai,k>l],且至多有 h + 1 h+1 h+1条斜率不同的线段。
当两个凸壳 i , j i,j i,j交于一点,且该点所处的两条线段斜率不同时, i , j i,j i,j之间的排名关系会发生变化,显而易见的是,两个 h + 1 h+1 h+1段上凸壳能找到 O ( h ) O(h) O(h)个上述交点,因此我们只需要求出每个 i , j i,j i,j交点和交点处 i , j i,j i,j的排名变化,即可算出任意时刻某点排名。
具体的,我们把 a i , 1 , a i , 2 . . . a i , h a_{i,1},a_{i,2}...a_{i,h} ai,1,ai,2...ai,h排序,然后对于每个 i , j i,j i,j,求出 a i , a j a_i,a_j ai,aj中的所有不同的值 b 1 , b 2 , b 3 . . . b n b_1,b_2,b_3...b_n b1,b2,b3...bn,且令 b 0 = 0 , b n + 1 = 1 0 9 b_0=0,b_{n+1}=10^9 b0=0,bn+1=109,显然 ( b k , b k + 1 ] (b_k,b_{k+1}] (bk,bk+1]这一段中的上述交点唯一,直接计算即可,时间复杂度为 O ( p 2 h ) O(p^2h) O(p2h)。
最后把所有
O
(
p
2
h
)
O(p^2h)
O(p2h)个排名变化按时间排序统计最小值即可。
总时间复杂度
O
(
p
2
h
l
o
g
p
h
)
O(p^2h\;log\;ph)
O(p2hlogph)。
Code
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <cstring>
#include <ctime>
#include <cassert>
#include <string.h>
//#include <unordered_set>
//#include <unordered_map>
//#include <bits/stdc++.h>
#define MP(A,B) make_pair(A,B)
#define PB(A) push_back(A)
#define SIZE(A) ((int)A.size())
#define LEN(A) ((int)A.length())
#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define fi first
#define se second
using namespace std;
template<typename T>inline bool upmin(T &x,T y) { return y<x?x=y,1:0; }
template<typename T>inline bool upmax(T &x,T y) { return x<y?x=y,1:0; }
typedef long long ll;
typedef unsigned long long ull;
typedef long double lod;
typedef pair<int,int> PR;
typedef vector<int> VI;
const lod eps=1e-11;
const lod pi=acos(-1);
const int oo=1<<30;
const ll loo=1ll<<62;
const int mods=998244353;
const int MAXN=20005;
const int INF=0x3f3f3f3f;//1061109567
/*--------------------------------------------------------------------*/
inline int read()
{
int f=1,x=0; char c=getchar();
while (c<'0'||c>'9') { if (c=='-') f=-1; c=getchar(); }
while (c>='0'&&c<='9') { x=(x<<3)+(x<<1)+(c^48); c=getchar(); }
return x*f;
}
PR V[505][50005];
int a[505][55],b[50005],Num[505],num;
void add(int x) { if (b[num]==x) return; b[++num]=x; }
signed main()
{
int n=read(),m=read();
for (int i=1;i<=n;i++)
{
for (int j=1;j<=m;j++) a[i][j]=read();
sort(a[i]+1,a[i]+m+1);
}
for (int i=1;i<=n;i++)
for (int j=i+1;j<=n;j++)
{
int nw=1; b[num=1]=0;
for (int k=1;k<=m;k++)
{
while (nw<=m&&a[j][nw]<=a[i][k]) add(a[j][nw]),nw++;
add(a[i][k]);
}
while (nw<=m) add(a[j][nw]),nw++;
add(1000000000);
ll x1=0,x2=0,s1=0,s2=0;
for (int k=1;k<num;k++)
{
while (x1<m&&a[i][x1+1]<=b[k]) x1++;
while (x2<m&&a[j][x2+1]<=b[k]) x2++;
if (x1>x2&&s1>=s2)
{
ll t=(s1-s2-1)/(x1-x2)+1,p=(s1-s2)/(x1-x2)+1;
if (p+b[k]<=b[k+1]) V[i][Num[i]++]=MP(b[k]+p,-1);
if (s1!=s2&&t+b[k]<=b[k+1]) V[j][Num[j]++]=MP(b[k]+t,1);
}
else if (x1<x2&&s1<=s2)
{
ll t=(s2-s1-1)/(x2-x1)+1,p=(s2-s1)/(x2-x1)+1;
if (p+b[k]<=b[k+1]) V[j][Num[j]++]=MP(b[k]+p,-1);
if (s1!=s2&&t+b[k]<=b[k+1]) V[i][Num[i]++]=MP(b[k]+t,1);
}
s1+=(m-x1)*(b[k+1]-b[k]),s2+=(m-x2)*(b[k+1]-b[k]);
}
}
for (int i=1;i<=n;i++)
{
sort(V[i],V[i]+Num[i]);
int mn=n,nw=n;
for (int j=0;j<Num[i];j++)
{
nw+=V[i][j].se;
if (V[i][j].fi!=V[i][j+1].fi) upmin(mn,nw);
}
printf("%d\n",mn);
}
return 0;
}