CF1158D. Beautiful Array

CF1158D. Beautiful Array

Solution

构造

对于所有点(xi,yi)(x_i,y_i)(xi,yi)选择yiy_iyi最小的点作为起点,每次考虑下一步若是LLL,则往最右边(与当前线段夹角最大)的点走,否则往最左边的点走。

时间复杂度O(n2)O(n^2)O(n2)

#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <cstring>
#include <ctime>
#include <cassert>
#include <string.h>
//#include <unordered_set>
//#include <unordered_map>
//#include <bits/stdc++.h>

#define MP(A,B) make_pair(A,B)
#define PB(A) push_back(A)
#define SIZE(A) ((int)A.size())
#define LEN(A) ((int)A.length())
#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define fi first
#define se second
#define int ll

using namespace std;

template<typename T>inline bool upmin(T &x,T y) { return y<x?x=y,1:0; }
template<typename T>inline bool upmax(T &x,T y) { return x<y?x=y,1:0; }

typedef long long ll;
typedef unsigned long long ull;
typedef long double lod;
typedef pair<int,int> PR;
typedef vector<int> VI;

const lod eps=1e-11;
const lod pi=acos(-1);
const int oo=1<<30;
const ll loo=1ll<<62;
const int mods=998244353;
const int MAXN=200005;
const int INF=0x3f3f3f3f;
/*--------------------------------------------------------------------*/
inline ll read()
{
	ll f=1,x=0; char c=getchar();
	while (c<'0'||c>'9') { if (c=='-') f=-1; c=getchar(); }
	while (c>='0'&&c<='9') { x=(x<<3)+(x<<1)+(c^48); c=getchar(); }
	return x*f;
}
PR a[MAXN];
char st[MAXN];
int n,flag[MAXN],Ans[MAXN];
int cross(PR x,PR y,PR z) { return (y.fi-x.fi)*(z.se-x.se)-(y.se-x.se)*(z.fi-x.fi); }
signed main()
{	
	n=read();
	int mn=1;
	for (int i=1;i<=n;i++) a[i].fi=read(),a[i].se=read(),a[i].se<a[mn].se?mn=i:0;
	flag[mn]=1,Ans[1]=mn;
	scanf("%s",st+1);
 	for (int i=2,lst=0;i<n;i++)
	{
		if (st[i-1]=='L')
		{
			int mx=0;
			for (int j=1;j<=n;j++)
				if (!flag[j]&&(!mx||cross(a[Ans[i-1]],a[mx],a[j])<0)) mx=j;
			Ans[i]=mx,flag[mx]=1;
		}
		else
		{
			int mx=0;
			for (int j=1;j<=n;j++)
				if (!flag[j]&&(!mx||cross(a[Ans[i-1]],a[mx],a[j])>0)) mx=j;
			Ans[i]=mx,flag[mx]=1;
		}
	}
	for (int i=1;i<n;i++) printf("%d ",Ans[i]);
	for (int i=1;i<=n;i++)
		if (!flag[i]) printf("%d\n",i);
	return 0;
}
内容概要:本文介绍了一种基于蒙特卡洛模拟和拉格朗日优化方法的电动汽车充电站有序充电调度策略,重点针对分时电价机制下的分散式优化问题。通过Matlab代码实现,构建了考虑用户充电需求、电网负荷平衡及电价波动的数学模【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)型,采用拉格朗日乘子法处理约束条件,结合蒙特卡洛方法模拟大量电动汽车的随机充电行为,实现对充电功率和时间的优化分配,旨在降低用户充电成本、平抑电网峰谷差并提升充电站运营效率。该方法体现了智能优化算法在电力系统调度中的实际应用价值。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事新能源汽车、智能电网相关领域的工程技术人员。; 使用场景及目标:①研究电动汽车有序充电调度策略的设计与仿真;②学习蒙特卡洛模拟与拉格朗日优化在能源系统中的联合应用;③掌握基于分时电价的需求响应优化建模方法;④为微电网、充电站运营管理提供技术支持和决策参考。; 阅读建议:建议读者结合Matlab代码深入理解算法实现细节,重点关注目标函数构建、约束条件处理及优化求解过程,可尝试调整参数设置以观察不同场景下的调度效果,进一步拓展至多目标优化或多类型负荷协调调度的研究。
内容概要:本文围绕面向制造业的鲁棒机器学习集成计算流程展开研究,提出了一套基于Python实现的综合性计算框架,旨在应对制造过程中数据不确定性、噪声干扰面向制造业的鲁棒机器学习集成计算流程研究(Python代码实现)及模型泛化能力不足等问题。该流程集成了数据预处理、特征工程、异常检测、模型训练与优化、鲁棒性增强及结果可视化等关键环节,结合集成学习方法提升预测精度与稳定性,适用于质量控制、设备故障预警、工艺参数优化等典型制造场景。文中通过实际案例验证了所提方法在提升模型鲁棒性和预测性能方面的有效性。; 适合人群:具备Python编程基础和机器学习基础知识,从事智能制造、工业数据分析及相关领域研究的研发人员与工程技术人员,尤其适合工作1-3年希望将机器学习应用于实际制造系统的开发者。; 使用场景及目标:①在制造环境中构建抗干扰能力强、稳定性高的预测模型;②实现对生产过程中的关键指标(如产品质量、设备状态)进行精准监控与预测;③提升传统制造系统向智能化转型过程中的数据驱动决策能力。; 阅读建议:建议读者结合文中提供的Python代码实例,逐步复现整个计算流程,并针对自身业务场景进行数据适配与模型调优,重点关注鲁棒性设计与集成策略的应用,以充分发挥该框架在复杂工业环境下的优势。
### 解决方案 在使用 `quill-blot-formatter` 插件时,如果遇到 `Super expression must either be null or a function, not undefined` 的错误,通常是因为插件的引入方式不正确或依赖未正确加载。以下是解决该问题的具体方法: 1. **修改插件的引入方式** 确保正确引入 `quill-blot-formatter` 插件。根据引用内容,推荐使用以下方式引入插件[^1]: ```javascript import BlotFormatter from 'quill-blot-formatter/dist/BlotFormatter'; window.Quill = Quill; Quill.register('modules/blotFormatter', BlotFormatter); ``` 2. **检查模块注册路径** 在引用中提到,需要将模块注册到 Quill 中时,确保路径与插件名称一致。例如,使用 `blotFormatter` 而不是其他名称[^3]: ```javascript Quill.register('modules/blotFormatter', BlotFormatter); ``` 3. **确保依赖正确安装** 如果项目使用了打包工具(如 Webpack 或 Vite),需确认所有依赖已正确安装。可以通过以下命令重新安装依赖: ```bash npm install quill quill-blot-formatter --save ``` 4. **避免命名冲突** 在某些情况下,`Super expression must either be null or a function` 错误可能是由于类名或模块名冲突引起的。确保代码中没有重复定义或错误导入的类[^5]。 5. **检查生产环境配置** 生产环境中可能会因为 Tree Shaking 或代码优化导致部分依赖未正确加载。可以通过以下方式解决: - 在 `vite.config.js` 或 `webpack.config.js` 中明确指定 `quill-blot-formatter` 的路径。 - 使用绝对路径引入插件以避免路径解析问题。 6. **验证 Quill 版本兼容性** 确保使用的 `quill` 和 `quill-blot-formatter` 版本兼容。如果版本不匹配,可能会导致运行时错误。例如,`quill-blot-formatter` 的最新版本可能需要 `quill@^1.3.7`[^2]。 ### 示例代码 以下是一个完整的示例,展示如何正确引入和注册 `quill-blot-formatter` 插件: ```javascript import Quill from 'quill'; import BlotFormatter from 'quill-blot-formatter/dist/BlotFormatter'; window.Quill = Quill; Quill.register('modules/blotFormatter', BlotFormatter); const quill = new Quill('#editor', { modules: { blotFormatter: true, }, theme: 'snow', }); ``` ### 注意事项 - 如果仍然出现错误,请检查控制台日志以定位具体问题。 - 确保项目中没有同时引入多个版本的 Quill 或相关插件。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值