常用被引用文献 MIRA CRF

本文介绍了MIRA(Margin Infused Relaxed Algorithm)和CRF(Conditional Random Fields)两种机器学习算法。MIRA是一种在线学习算法,在分类、排序、预测等领域表现出色;CRF则是一种用于序列标注问题的概率模型,广泛应用于自然语言处理任务中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • MIRA (Margin Infused Relaxed Algorithm )一种超保守在线算法, 在分类、排序、预测等应用领域取得不错成绩

理论

Koby Crammer.
2004. Online Learning of Com-plex Categorial Problems. Hebrew Univeristy of Jerusalem, PhD Thesis
2005. Ryan McDonald, and Fernando Pereira.Scalable large-margin online learning for structured classification.In NIPS Workshop on Learning With Structured Outputs
2006.Dekel O, Keshet J, Shalev-Shwartz S, SingerY. Online passive-aggressive algorithms.Journal of Machine Learning Research, 7: 551¡585
Ryan McDonald
2005.Crammer K, Pereira F. Online large-margin training of dependency parsers. In: Proceedings of the 43rd Annual Meeting on the Association for Computational Lin-guistics. Ann Arbor, USA: ACL, . 91¡98
2005. Femando Pereira, Kiril Ribarow, and Jan Hajic. Non-projective dependency parsing using spanning tree algorithms. In Proceedings of HLT/EMNLP, pages 523–530.
2006.Discriminative Training and Spanning Tree Algorithms for Dependency Parsing. University of Pennsylvania, PhD Thesis.

使用

2009.An Error-Driven Word-Character Hybrid Model for Joint Chinese Word Segmentation and POS Tagging

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

  • CRF(Conditional random fields)条件随机场,2001开始用于序列标注问题

理论

John Lafferty
2001. Andrew McCallum, and Fernando Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. InProceedings of ICML, pages 282–289

使用

2012. Fast Online Training with Frequency-Adaptive Learning Rates for Chinese Word Segmentation and New

未完待续……

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值