# coding=utf-8 from math import sqrt """ *********************""" """一元线性回归求解及其模型检验""" """ *********************""" """ linear_regresssion:求解解决和斜率 goodnessOfFit:拟合优度计算 fTest:线性关系的显著性检验 tTest:回归参数的显著性检验 Author:mikebnu Data:2022-08-05 version: 1.0 """ """ 输入:x,自变量;y,因变量,列表 输出:a,b 功能:计算一元线性回归方程的a和b Y = a + bX """ def linear_regresssion(x, y): size = len(x) #数据点数量 x_avearge = sum(x) / size # x的平均值 y_average = sum(y) / size # y的平均值 x_y_average = 0 #xy的平均值 x_x_average = 0 #x平方的平均值 s_xy = 0 s_x = 0 for i in range(size): s_xy += x[i] * y[i] s_x += x[i]**2 x_y_average = s_xy / size x_x_average = s_x /size b = (x_avearge * y_average - x_y_average) / (x_avearge **2 - x_x_average) #返回值a,b return [ y_average - b * x_avearge, b] """ 计算ESS和RSS ESS = ∑(y期望值- y均值 )**2 RSS = ∑(y观测值-y期望值 )**2 TSS = ESS + RSS 输入:x,自变量, y因变量,a截距, b斜率 输出:[ESS, RSS] ""
一元线性回归求解及其模型检验的Python实现
最新推荐文章于 2024-03-09 19:15:08 发布