Getting started with Kivy

Getting started with Kivy – Kivy Blog

This post collates various resources for getting started with the Kivy graphical framework for Python.
这份发表通过 kivy图像框架 来校对不同的资源来开始

Installation  安装

Follow the official installation documentation.
跟随官方的安装文档

Introductory resources   入门资料  们

General resources

  • The official Kivy documentation. Linked is the API reference, almost everything in Kivy is documented in there somewhere.
    官方kivy文档。 超链接是API文献,

Kivy examples

Kivy comes with many examples, with fairly complete coverage of most widgets and other core features. These are very valuable for working out how to use things.
kivy 伴随着许多案例,掺合着公平完整地覆盖多数的组件和其他核心的特征。这是重要的来如何使用这些部件。

On some platforms, the examples may be installable as a separate package from your operating system’s package manager.
在许多平台,从你包装管理中 的操作系统案例可以作为一个独立的包安装

See in particular:  看详细资料:

Support channels    支持通道:

  • The official Kivy Discord channels are the single most active support channel.
    官方kivy不一致的通道 是单一多数激活的支持通道.
  • The Kivy-users google group.  kivy使用者谷歌群组
  • The issues list on Github. This should only be used if reporting an apparent bug in Kivy itself, it isn’t a good place for generic support requests.
    在Github问题列表,这应该只是被使用 当 报告一个显而易见的bug在kivy自己中,它不是一个好的地方给基因支持请求。
  • Kivy users and developers may be active on Python Discord.
    kivy  使用者和开发者可以在Python 不和中被激活。
将Human Detection with Face Recognition这段代码写入以下代码import cv2 # OpenCV库,用于图像处理 import numpy as np # 数值计算库 from collections import defaultdict # 提供带默认值的字典 import shutil # 文件操作库 import pyttsx3 # 本地语音合成库 from datetime import datetime # 日期时间处理 import logging # 日志处理库 import threading # 线程库 import queue # 队列库 import json # JSON处理库 from pathlib import Path # 路径处理库 from typing import List # 类型提示 import time # 时间处理库 import os # 操作系统相关操作 import sys # 系统相关操作 from flask import Flask, render_template # Flask框架及模板渲染 import geocoder # 地理位置获取模块 from .weather.weather_service import WeatherService # 导入天气服务模块 from .weather.config import * # 如有需要可导入配置 from .weather.api_client import * # 如有需要可导入API客户端 from .weather.exception import * # 如有需要可导入异常定义 from .utils import read_text_baidu, user_speech_recognition, record_audio_until_silence, audio_to_text, text_to_speech_chinese, load_known_faces_from_folder # 导入通用工具函数 from .voice_feature import VoiceAssistant # 导入语音助手模块 from .face_recognition import FaceRecognition # 导入人脸识别系统 # 初始化Flask应用 app = Flask(__name__) app.config['TEMPLATES_AUTO_RELOAD'] = True # 设置模板自动重载 # 全局运行标志,控制主循环0 running = True # 控制主循环是否继续运行 face_detected = False # 标记是否检测到人脸 wake_words = ["小", "小朋友", "朋友"] # 唤醒词列表 WAKE_WORD_THRESHOLD = 0.7 # 唤醒词识别阈值 assistant = None # 全局语音助手对象 face_detection_running = False # 标记人脸检测线程是否运行中 face_detection_success = False # 标记人脸检测是否成功 # 定义Flask路由,主页 @app.route('/') def index(): """渲染主界面页面""" return render_template('index.html') # 定义Flask路由,测试接口 @app.route('/test') def test(): """测试接口,验证Flask服务是否正常""" return "Flask server is working!" preloaded_face_data = None # 全局变量,存储预加载的人脸数据 def preload_face_data(): """预加载人脸数据到内存,提升识别速度""" face_system = FaceRecognition() # 创建人脸识别系统对象 image_paths_by_person = load_known_faces_from_folder("known_faces") # 加载已知人脸图片路径 for person_name, image_paths in image_paths_by_person.items(): # 遍历每个人 face_system.add_new_person(person_name, image_paths) # 添加人脸特征 return face_system # 返回人脸识别系统对象 def detect_face(timeout=60) -> bool: """使用预加载的人脸数据检测人脸,超时返回False""" global preloaded_face_data if preloaded_face_data is None: # 检查是否已预加载 print("Error: Face data not preloaded.") return False start_time = time.time() # 记录检测开始时间 while time.time() - start_time < timeout and running: # 在超时时间内循环检测 try: recognized = preloaded_face_data.start_recognition() # 调用识别方法 if recognized: # 如果识别到人脸 print("Face detected") return True else: print("No face detected (during activation)") time.sleep(0.5) # 未识别到,等待0.5秒再试 except Exception as e: print(f"Error during recognition: {e}") # 捕获异常并打印 time.sleep(0.5) return False # 超时未识别到人脸 def get_user_location(): """通过geocoder获取用户地理位置""" try: return geocoder.ip("me") # 获取本机IP对应的地理位置 except Exception as e: print(f"Error getting location: {e}") return None def assistant_mode(): """语音助手主循环,处理用户语音指令""" global running, face_detected, assistant if assistant is None: # 检查语音助手是否初始化 print("Error: Assistant not initialized.") return location = get_user_location() # 获取用户地理位置 weather = WeatherService() # 创建天气服务对象 longitude = location.lng if location else None # 获取经度 latitude = location.lat if location else None # 获取纬度 response = weather.get_weather_info(longitude, latitude) if longitude and latitude else {} # 获取天气信息 listening_duration = 60 # 监听超时时间(秒) last_interaction_time = time.time() # 上次交互时间 read_text_baidu("你好!有什么我可以帮您?") # 语音播报欢迎语 while running and face_detected: # 只要系统运行且检测到人脸 if time.time() - last_interaction_time > listening_duration: # 超时未交互 read_text_baidu("等待唤醒...") face_detected = False break text = user_speech_recognition() # 获取用户语音输入 if text: # 如果识别到内容 print(f"User said: {text}") last_interaction_time = time.time() # 重置交互时间 if '天气' in text and response: # 天气查询 print("Weather query detected") print("Response: " + response.get('weather_condition', '')) read_text_baidu(f"今天的天气状况如下, 位置:{location.city if location else ''}") read_text_baidu(f"天气:{response.get('weather_condition', '')}") read_text_baidu(f"温度:{response.get('temperature', '')}") read_text_baidu(f"体感温度:{response.get('feels_like', '')}") read_text_baidu(f"湿度:{response.get('humidity', '')}") read_text_baidu(f"风向:{response.get('wind_direction', '')}") read_text_baidu(f"风速:{response.get('wind_speed', '')}") read_text_baidu(f"气压:{response.get('pressure', '')}") read_text_baidu(f"能见度:{response.get('visibility', '')}") read_text_baidu(f"云量:{response.get('cloud_coverage', '')}") continue elif '几点' in text: # 时间查询 print("Time query detected") read_text_baidu(f"现在是 {time.strftime('%H:%M')}") continue elif '空调' in text: # 空调控制 print("AC query detected") read_text_baidu("好的,正在处理空调指令。") continue elif '拜拜' in text or '再见' in text: # 结束对话 read_text_baidu("拜拜,下次再见!") face_detected = False continue else: # 其他内容交给大模型处理 print("Deepseek request") print(f"Heard: {text}, processing with DeepSeek...") response = assistant.chat(text) # 调用大模型 print(f"DeepSeek response: {response}") read_text_baidu(response) continue else: print("Listening for command...") # 未识别到内容,继续监听 time.sleep(1) if face_detected: # 如果还在检测状态,提示等待唤醒 read_text_baidu("等待唤醒...") face_detected = False def run_face_detection(): """运行人脸检测线程,检测成功则标记,否则语音提示失败""" global face_detection_running, face_detection_success face_detection_running = True # 标记检测线程已启动 if detect_face(timeout=60): # 检测人脸 face_detection_success = True # 检测成功 else: text_to_speech_chinese("我无法识别您的面部。如果需要我,请随时叫我。") # 检测失败语音提示 face_detection_running = False # 检测线程结束 def wake_word_detection_loop(): """唤醒词检测主循环,检测到唤醒词后启动人脸检测和助手""" global running, face_detected, assistant global face_detection_running, face_detection_success if assistant is None: # 检查语音助手是否初始化 print("Error: Assistant not initialized.") return while running: # 主循环 if face_detected: # 如果已检测到人脸,等待 time.sleep(2) continue if face_detection_success: # 如果人脸检测成功,启动助手线程 face_detected = True face_detection_success = False # 重置标志 assistant_thread = threading.Thread(target=assistant_mode) assistant_thread.start() continue if not face_detection_running: # 如果没有人脸检测线程在运行 print("Listening for wake word...") # 等待唤醒词 script = audio_to_text() # 语音转文本 if script: for wake_word in wake_words: # 检查是否包含唤醒词 if wake_word in script: text_to_speech_chinese("唤醒成功,请靠近并扫描您的面部以继续互动。这是为了您的安全。") threading.Thread(target=run_face_detection).start() # 启动人脸检测线程 break else: print("Wake word not detected.") # 未检测到唤醒词 else: print("No speech detected.") # 未检测到语音 time.sleep(1) # 防止CPU占用过高 def launch_gui(): """启动图形界面,优先PyQt5,失败则尝试Kivy,再失败则控制台模式""" try: from PyQt5.QtWebEngineWidgets import QWebEngineView from PyQt5.QtWidgets import QApplication from PyQt5.QtCore import QUrl import sys app = QApplication(sys.argv) web = QWebEngineView() web.load(QUrl("http://localhost:8080")) web.show() sys.exit(app.exec_()) except ImportError: try: from kivy.app import App from kivy.uix.label import Label class SimpleApp(App): def build(self): return Label(text='Display Error, your Smart Mirror is Running\nhttp://localhost:8080') SimpleApp().run() except ImportError: print("GUI frameworks not available - running in console mode") print("Access the mirror at http://localhost:8080") import time while True: time.sleep(1) def main() -> None: """主入口,初始化各模块并启动主线程""" global running, assistant, preloaded_face_data print("Smart Mirror started.") assistant = VoiceAssistant( baidu_app_id=os.getenv("BAIDU_APP_ID"), baidu_api_key=os.getenv("BAIDU_API_KEY"), baidu_secret_key=os.getenv("BAIDU_SECRET_KEY"), deepseek_api_key=os.getenv("DEEPSEEK_API_KEY"), ) preloaded_face_data = preload_face_data() gui_thread = threading.Thread(target=launch_gui) # 启动GUI线程 voice_thread = threading.Thread(target=wake_word_detection_loop, daemon=True) voice_thread.start() gui_thread.start() try: while True: # 主线程保持运行 time.sleep(1) except KeyboardInterrupt: print("Exiting...") running = False # 终止主循环 pir_thread.join() voice_thread.join() GPIO.cleanup() # 清理GPIO设置 if __name__ == "__main__": main() # 运行主入口中实现语音识别到关键词和人体靠近都可以实现开启人脸识别功能,整体逻辑和框架不要动,尽量以加入的方式少量修改来完成功能的实现和时间效率的提高
07-10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xinzheng新政

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值