[leetcode 145] Binary Tree Postorder Traversal (待完善)

本文介绍二叉树后序遍历的三种方法:递归、栈迭代及Morris遍历。递归方法简洁但栈使用较多;迭代法利用栈实现非递归遍历;Morris遍历则在不额外使用栈的基础上完成遍历。

Given a binary tree, return the postorder traversal of its nodes' values.

For example:
Given binary tree {1,#,2,3},

   1
    \
     2
    /
   3

return [3,2,1].

Note: Recursive solution is trivial, could you do it iteratively?

递归

/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    vector<int> res;
    vector<int> postorderTraversal(TreeNode *root) {
        if (root == NULL) {
            return res;
        }
        postorderTraversal(root->left);
        postorderTraversal(root->right);
        res.push_back(root->val);
        return res;
    }
};

/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    vector<int> postorderTraversal(TreeNode *root) {
        vector<int> res;
        stack<int> nodeState;
        stack<TreeNode*> node;
        if (root == NULL) {
            return res;
        }
        node.push(root);
        nodeState.push(0);
        while (!node.empty()) {
            auto n = node.top();
            node.pop();
            auto state = nodeState.top();
            nodeState.pop();
            if (state == 0) {
                node.push(n);
                nodeState.push(1);
                if (n->right) {
                    node.push(n->right);
                    nodeState.push(0);
                }
                if (n->left) {
                    node.push(n->left);
                    nodeState.push(0);
                }
            } else {
                res.push_back(n->val);
            }
        }
        return res;
    }
};

Morris遍历

基本思想和先序和中序遍历一样,但是要麻烦一些。只是在遍历前,增加了一个类似头节点的节点作为整个遍历过程的起始节点。由于后序遍历先访问左子树,然后是右子树,最后访问根节点,所以在Morris算法遍历过程中,增加一个头节点dump表示新二叉树的根节点,让这个新的根节点的左指针指向原二叉树的根节点,右指针为NULL。对于某个节点N,先遍历N的左子树的左子树,再逆序遍历从N节点的左子树的根节点到中序遍历过程访问的最右节点这条路径上的节点。

/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    vector<int> res;
    vector<int> postorderTraversal(TreeNode *root) {
        if (root == NULL) {
            return res;
        }
        TreeNode *dummy = new TreeNode(-1);
        dummy->left = root;
        TreeNode *p = dummy;
        while (p) {
            if (!p->left) {
                p = p->right;
            } else {
                auto tmp = p->left;
                while (tmp->right && tmp->right != p) {
                    tmp = tmp->right;
                }
                if (!tmp->right) {
                    tmp->right = p;
                    p = p->left;
                } else {
                    pustres(p->left, tmp);
                    tmp->right = NULL;
                    p = p->right;
                }
            }
        }
        return res;
    }
    //同反转单链表
    void reverse(TreeNode *begin, TreeNode *end) {
        if (begin == end) {
            return ;
        }
        TreeNode *prev = begin;
        TreeNode *cur = begin->right;
        TreeNode *next = cur?cur->right:NULL;
        while (prev != end) {
            cur->right = prev;
            prev = cur;
            cur = next;
            next = next?next->right:NULL;
        }
    }
    void pustres(TreeNode *begin, TreeNode *end) {
        TreeNode *p;
        reverse(begin, end);
        p = end;
        while (true) {
            res.push_back(p->val);
            if (p == begin) {
                break;
            }
            p = p->right;
        }
        reverse(end, begin);
    }
};


评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值