【Elasticsearch】吐血整理

本文详细介绍了Elasticsearch的文档路由原理,包括哈希算法确定分片位置,以及数据写入过程,涉及协调节点、主分片和副本分片的角色。此外,还讲解了倒排索引的概念,用于快速检索。在优化方面,提到了内存缓存、数据预热、冷热数据分离和文档模型设计等策略。最后,讨论了Elasticsearch的主节点选举、分页性能问题和解决办法,以及Linux系统层面的优化配置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Elasticsearch

es路由文档原理

Es文档路由的原理

⾸先文档被存放在哪个分片中肯定不会是随机的,否则搜索要获取⽂档时ES就不知道从何处寻找了。实际上,这个过程是根据这个公式决定的:****shard = hash(routing) % number_of_primary_shards。****

这里的routing是⼀个可变值,默认是⽂档的_id ,也可以设置成⼀个⾃定义的值。 routing通过hash函数⽣成⼀个哈希值,然后将哈希值再除以number_of_primary_shards(即主分⽚的数量)后得到 余数 。这个分布在 0 到 number_of_primary_shards-1 之间的余数,就是我们所寻求的⽂档所在分⽚的位置。

es写数据的过程

  • 客户端选择一个 node 发送请求过去,这个 node 就是 coordinating node (协调节点
  • coordinating node 对 document 进行路由,将请求转发给对应的 node(有 primary shard)。
  • 实际的 node 上的 primary shard 处理请求,然后将数据同步到 replica node 。
  • coordinating node 如果发现 primary node 和所有 replica node都搞定之后,就返回响应结果给客户端。

总结一下,数据先写入内存 buffer,然后每隔 1s,将数据 refresh 到 os cache,到了 os cache 数据就能被搜索到(所以我们才说 es 从写入到能被搜索到,中间有 1s 的延迟)。每隔 5s,将数据写入 translog 文件(这样如果机器宕机,内存数据全没,最多会有 5s 的数据丢失),translog 大到一定程度,或者默认每隔 30mins,会触发 commit 操作,将缓冲区的数据都 flush 到 segment file 磁盘文件中。

数据写入 segment file 之后,同时就建立好了倒排索引。

es读数据过程

可以通过 doc id 来查询,会根据 doc id 进行 hash,判断出来当时把 doc id 分配到了哪个 shard 上面去,从那个 shard 去查询。

  • 客户端发送请求到任意一个 node,成为 coordinate node 。
  • coordinate node 对 doc id 进行哈希路由,将请求转发到对应的 node,此时会使用 round-robin随机轮询算法,在 primary shard 以及其所有 replica 中随机选择一个,让读请求负载均衡。
  • 接收请求的 node 返回 document 给 coordinate node 。
  • coordinate node 返回 document 给客户端。

删除/更新数据底层原理

如果是删除操作,commit 的时候会生成一个 .del 文件,里面将某个 doc 标识为 deleted 状态,那么搜索的时候根据 .del 文件就知道这个 doc 是否被删除了。

如果是更新操作,就是将原来的 doc 标识为 deleted 状态,然后新写入一条数据。

buffer 每 refresh 一次,就会产生一个 segment file ,所以默认情况下是 1 秒钟一个 segment file ,这样下来 segment file 会越来越多,此时会定期执行 merge。每次 merge 的时候,会将多个 segment file合并成一个,同时这里会将标识为 deleted 的 doc 给物理删除掉,然后将新的 segment file 写入磁盘,这里会写一个 commit point ,标识所有新的 segment file ,然后打开 segment file 供搜索使用,同时删除旧的 segment file。

底层Lucene

简单来说,lucene 就是一个 jar 包,里面包含了封装好的各种建立倒排索引的算法代码。我们用 Java 开发的时候,引入 lucene jar,然后基于 lucene 的 api 去开发就可以了。

通过 lucene,我们可以将已有的数据建立索引,lucene 会在本地磁盘上面,给我们组织索引的数据结构。
————————————————
版权声明:本文为优快云博主「老鬼。。。」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.youkuaiyun.com/weixin_49794051/article/details/109638832

倒排索引

在搜索引擎中,每个文档都有一个对应的文档 ID,文档内容被表示为一系列关键词的集合。例如,文档 1 经过分词,提取了 20 个关键词,每个关键词都会记录它在文档中出现的次数和出现位置。

那么,倒排索引就是关键词到文档 ID 的映射,每个关键词都对应着一系列的文件,这些文件中都出现了关键词。

举个栗子。

有以下文档:

DocId Doc
1 谷歌地图之父跳槽 Facebook
2 谷歌地图之父加盟 Facebook
3 谷歌地图创始人拉斯离开谷歌加盟 Facebook
4 谷歌地图之父跳槽 Facebook 与 Wave 项目取消有关
5 谷歌地图之父拉斯加盟社交网站 Facebook
对文档进行分词之后,得到以下倒排索引。

WordId Word DocIds
1 谷歌 1, 2, 3, 4, 5
2 地图 1, 2, 3, 4, 5
3 之父 1, 2, 4, 5
4 跳槽 1, 4
5 Facebook 1, 2, 3, 4, 5
6 加盟 2, 3, 5
7 创始人 3
8 拉斯 3, 5
9 离开 3
10 与 4
… … …

另外,实用的倒排索引还可以记录更多的信息,比如文档频率信息,表示在文档集合中有多少个文档包含某个单词。

那么,有了倒排索引,搜索引擎可以很方便地响应用户的查询。比如用户输入查询 Facebook ,搜索系统查找倒排索引,从中读出包含这个单词的文档,这些文档就是提供给用户的搜索结果。

要注意倒排索引的两个重要细节:

倒排索引中的所有词项对应一个或多个文档;
倒排索引中的词项根据字典顺序升序排列
————————————————
版权声明:本文为优快云博主「老鬼。。。」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.youkuaiyun.com/weixin_49794051/article/details/109638832

优化:

在亿级数据量的时候,可能搜索变得特别慢。

1、性能优化的杀手锏—filesystem cache

你往 es 里写的数据,实际上都写到磁盘文件里去了,查询的时候,操作系统会将磁盘文件里的数据自动缓存到 filesystem cache 里面去。

es 的搜索引擎严重依赖于底层的 filesystem cache,你如果给 filesystem cache 更多的内存,尽量让内存可以容纳所有的 idx segment file 索引数据文件,那么你搜索的时候就基本都是走内存的,性能会非常高。

性能差距究竟可以有多大?我们之前很多的测试和压测,如果走磁盘一般肯定上秒,搜索性能绝对是秒级别的,1秒、5秒、10秒。但如果是走 filesystem cache,是走纯内存的,那么一般来说性能比走磁盘要高一个数量级,基本上就是毫秒级的,从几毫秒到几百毫秒不等。

单条数据的数据量越大,就会导致 filesystem cahce 能缓存的数据就越少。其实,仅仅写入 es 中要用来检索的少数几个字段就可以了,比如说就写入es id,name,age 三个字段,然后你可以把其他的字段数据存在 mysql/hbase 里,我们一般是建议用 es + hbase 这么一个架构。

hbase 的特点是适用于海量数据的在线存储,就是对 hbase 可以写入海量数据,但是不要做复杂的搜索,做很简单的一些根据 id 或者范围进行查询的这么一个操作就可以了。从 es 中根据 name 和 age 去搜索,拿到的结果可能就 20 个 doc id,然后根据 doc id 到 hbase 里去查询每个 doc id 对应的完整的数据,给查出来,再返回给前端。

2、数据预热

举个例子,拿微博来说,你可以把一些大V,平时看的人很多的数据,你自己提前后台搞个系统,每隔一会儿,自己的后台系统去搜索一下热数据,刷到 filesystem cache 里去,后面用户实际上来看这个热数据的时候,他们就是直接从内存里搜索了,很快。

对于那些你觉得比较热的,经常会有人访问的数据,最好做一个专门的缓存预热子系统,就是对热数据每隔一段时间,就提前访问一下,让数据进入 filesystem cache 里面去。这样下次别人访问的时候,一定性能会好一些。

3、冷热分离

es 可以做类似于 mysql 的水平拆分,就是说将大量的访问很少、频率很低的数据,单独写一个索引,然后将访问很频繁的热数据单独写一个索引。最好是将冷数据写入一个索引中,然后热数据写入另外一个索引中,这样可以确保热数据在被预热之后,尽量都让他们留在 filesystem os cache 里,别让冷数据给冲刷掉。

你看,假设你有 6 台机器,2 个索引,一个放冷数据,一个放热数据,每个索引 3 个 shard。3 台机器放热数据 index,另外 3 台机器放冷数据 index。然后这样的话,你大量的时间是在访问热数据 index,热数据可能就占总数据量的 10%,此时数据量很少,几乎全都保留在 filesystem cache 里面了,就可以确保热数据的访问性能是很高的。但是对于冷数据而言,是在别的 index 里的,跟热数据 index 不在相同的机器上,大家互相之间都没什么联系了。如果有人访问冷数据,可能大量数据是在磁盘上的,此时性能差点,就 10% 的人去访问冷数据,90% 的人在访问热数据,也无所谓了。

4、document模型设计

对于 MySQL,我们经常有一些复杂的关联查询。在 es 里该怎么玩儿,es 里面的复杂的关联查询尽量别用,一旦用了性能一般都不太好。

最好是先在 Java 系统里就完成关联,将关联好的数据直接写入 es 中。搜索的时候,就不需要利用 es 的搜索语法来完成 join 之类的关联搜索了。

document 模型设计是非常重要的,很多操作,不要在搜索的时候才想去执行各种复杂的乱七八糟的操作。es 能支持的操作就是那么多,不要考虑用 es 做一些它不好操作的事情。如果真的有那种操作,尽量在 document 模型设计的时候,写入的时候就完成。另外对于一些太复杂的操作,比如 join/nested/parent-child 搜索都要尽量避免,性能都很差的。

5、分页性能优化

es 的分页是较坑的,为啥呢?举个例子吧,假如你每页是 10 条数据,你现在要查询第 100 页,实际上是会把每个 shard 上存储的前 1000 条数据都查到一个协调节点上,如果你有个 5 个 shard,那么就有 5000 条数据,接着协调节点对这 5000 条数据进行一些合并、处理,再获取到最终第 100 页的 10 条数据。

分布式的,你要查第 100 页的 10 条数据,不可能说从 5 个 shard,每个 shard 就查 2 条数据?最后到协调节点合并成 10 条数据?你必须得从每个 shard 都查 1000 条数据过来,然后根据你的需求进行排序、筛选等等操作,最后再次分页,拿到里面第 100 页的数据。你翻页的时候,翻的越深,每个 shard 返回的数据就越多,而且协调节点处理的时间越长,非常坑爹。所以用 es 做分页的时候,你会发现越翻到后面,就越是慢。

我们之前也是遇到过这个问题,用 es 作分页,前几页就几十毫秒,翻到 10 页或者几十页的时候,基本上就要 5~10 秒 才能查出来一页数据了。

有什么解决方案吗?

不允许深度分页(默认深度分页性能很差)

跟产品经理说,你系统不允许翻那么深的页,默认翻的越深,性能就越差。

类似于 app 里的推荐商品不断下拉出来一页一页的

类似于微博中,下拉刷微博,刷出来一页一页的,你可以用 scroll api,关于如何使用,自行上网搜索。

scroll 会一次性给你生成所有数据的一个快照,然后每次滑动向后翻页就是通过游标 scroll_id 移动,获取下一页下一页这样子,性能会比上面说的那种分页性能要高很多很多,基本上都是毫秒级的。

但是,唯一的一点就是,这个适合于那种类似微博下拉翻页的,不能随意跳到任何一页的场景。也就是说,你不能先进入第 10 页,然后去第 120 页,然后又回到第 58 页,不能随意乱跳页。所以现在很多产品,都是不允许你随意翻页的,app,也有一些网站,做的就是你只能往下拉,一页一页的翻。

初始化时必须指定 scroll 参数,告诉 es 要保存此次搜索的上下文多长时间。你需要确保用户不会持续不断翻页翻几个小时,否则可能因为超时而失败。

除了用 scroll api,你也可以用 search_after 来做,search_after 的思想是使用前一页的结果来帮助检索下一页的数据,显然,这种方式也不允许你随意翻页,你只能一页页往后翻。初始化时,需要使用一个唯一值的字段作为 sort 字段

1、es了解多少,说说你的es集群架构,索引数据大小,分片有多少,以及一些调优手段

仅索引层面调优手段:

1.1、设计阶段调优

1、根据业务增量需求,采取基于日期模板创建索引,通过 roll over API 滚动索引;

2、使用别名进行索引管理;

3、每天凌晨定时对索引做 force_merge 操作,以释放空间;

4、采取冷热分离机制,热数据存储到 SSD,提高检索效率;冷数据定期进行 shrink操作,以缩减存储;

5、采取 curator 进行索引的生命周期管理;

6、仅针对需要分词的字段,合理的设置分词器;

7、Mapping 阶段充分结合各个字段的属性,是否需要检索、是否需要存储等。………

1.2、写入调优

1、写入前副本数设置为 0;

2、写入前关闭 refresh_interval 设置为-1,禁用刷新机制;

3、写入过程中:采取 bulk 批量写入;

4、写入后恢复副本数和刷新间隔;

5、尽量使用自动生成的 id。

1.3、查询调优

1、禁用 wildcard;

2、禁用批量 terms(成百上千的场景);

3、充分利用倒排索引机制,能 keyword 类型尽量 keyword;

4、数据量大时候,可以先基于时间敲定索引再检索;

5、设置合理的路由机制。

1.4、其他调优

部署调优,业务调优等。

上面的提及一部分,面试者就基本对你之前的实践或者运维经验有所评估了。

2、es的倒排索引是什么

传统的我们的检索是通过文章,逐个遍历找到对应关键词的位置。而倒排索引,是通过分词策略,形成了词和文章的映射关系表,这种词典+映射表即为倒排索引。

有了倒排索引,就能实现 o(1)时间复杂度的效率检索文章了,极大的提高了检索效率。

学术的解答方式:

倒排索引,相反于一篇文章包含了哪些词,它从词出发,记载了这个词在哪些文档中出现过,由两部分组成——词典和倒排表。

加分项:倒排索引的底层实现是基于:FST(Finite State Transducer)数据结构。lucene 从 4+版本后开始大量使用的数据结构是 FST。FST 有两个优点:

1、空间占用小。通过对词典中单词前缀和后缀的重复利用,压缩了存储空间;

2、查询速度快。O(len(str))的查询时间复杂度。

3、es索引数据多了怎么办,如何调优部署

索引数据的规划,应在前期做好规划,正所谓“设计先行,编码在后”,这样才能有效的避免突如其来的数据激增导致集群处理能力不足引发的线上客户检索或者其他业务受到影响。如何调优,正如问题 1 所说,这里细化一下:

3.1 动态索引层面

基于模板+时间+rollover api 滚动创建索引,举例:设计阶段定义:blog 索引的模板格式为:blog_index_时间戳的形式,每天递增数据。这样做的好处:不至于数据量激增导致单个索引数据量非常大,接近于上线 2 的32 次幂-1,索引存储达到了 TB+甚至更大。一旦单个索引很大,存储等各种风险也随之而来,所以要提前考虑+及早避免。

3.2 存储层面

冷热数据分离存储,热数据(比如最近 3 天或者一周的数据),其余为冷数据。对于冷数据不会再写入新数据,可以考虑定期 force_merge 加 shrink 压缩操作,节省存储空间和检索效率。

3.3 部署层面

一旦之前没有规划,这里就属于应急策略。结合 ES 自身的支持动态扩展的特点,动态新增机器的方式可以缓解集群压力,注意:如果之前主节点等规划合理,不需要重启集群也能完成动态新增的。

4、es是如何实现master选举的

面试官:想了解 ES 集群的底层原理,不再只关注业务层面了。

解答:

前置前提:

1、只有候选主节点(master:true)的节点才能成为主节点。

2、最小主节点数(min_master_nodes)的目的是防止脑裂。

这个我看了各种网上分析的版本和源码分析的书籍,云里雾里。

核对了一下代码,核心入口为 findMaster,选择主节点成功返回对应 Master,否

则返回 null。选举流程大致描述如下:

第一步:确认候选主节点数达标,elasticsearch.yml 设置的值discovery.zen.minimum_master_nodes;

第二步:比较:先判定是否具备 master 资格,具备候选主节点资格的优先返回;若两节点都为候选主节点,则 id 小的值会主节点。注意这里的 id 为 string 类型。题外话:获取节点 id 的方法。

1、Elasticsearch 的选主是 ZenDiscovery 模块负责的,主要包含 Ping(节点之间通过这个 RPC 来发现彼此)和 Unicast(单播模块包含一个主机列表以控制哪些节点需要 ping 通)这两部分;

2、对所有可以成为 master 的节点(node.master: true)根据 nodeId 字典排序,每次选举每个节点都把自己所知道节点排一次序,然后选出第一个(第 0 位)节点,暂且认为它是 master 节点。

3、如果对某个节点的投票数达到一定的值(可以成为 master 节点数 n/2+1)并且该节点自己也选举自己,那这个节点就是 master。否则重新选举一直到满足上述条件。

4、补充:master 节点的职责主要包括集群、节点和索引的管理,不负责文档级别的管理;data 节点可以关闭 http 功能*。

5、详细描述一下es索引文档的过程

这里的索引文档应该理解为文档写入 ES,创建索引的过程。

文档写入包含:单文档写入和批量 bulk 写入,这里只解释一下:单文档写入流程。记住官方文档中的这个图。

第一步:客户写集群某节点写入数据,发送请求。(如果没有指定路由/协调节点,请求的节点扮演路由节点的角色。)

第二步:节点 1 接受到请求后,使用文档_id 来确定文档属于分片 0。请求会被转到另外的节点,假定节点 3。因此分片 0 的主分片分配到节点 3 上。

第三步:节点 3 在主分片上执行写操作,如果成功,则将请求并行转发到节点 1和节点 2 的副本分片上,等待结果返回。所有的副本分片都报告成功,节点 3 将向协调节点(节点 1)报告成功,节点 1 向请求客户端报告写入成功。

如果面试官再问:第二步中的文档获取分片的过程?

回答:借助路由算法获取,路由算法就是根据路由和文档 id 计算目标的分片 id 的过程。

1shard = hash(_routing) % (num_of_primary_shards)

6、详细描述一下es搜索的过程

搜索拆解为“query then fetch” 两个阶段。

query 阶段的目的:定位到位置,但不取。

步骤拆解如下:

1、假设一个索引数据有 5 主+1 副本 共 10 分片,一次请求会命中(主或者副本分片中)的一个。

2、每个分片在本地进行查询,结果返回到本地有序的优先队列中。

3、第 2)步骤的结果发送到协调节点,协调节点产生一个全局的排序列表。

fetch 阶段的目的:取数据。

路由节点获取所有文档,返回给客户端。

7、es在部署中,对Linux的设置有哪些优化方法

1、关闭缓存 swap;

2、堆内存设置为:Min(节点内存/2, 32GB);

3、设置最大文件句柄数;

4、线程池+队列大小根据业务需要做调整;

5、磁盘存储 raid 方式——存储有条件使用 RAID10,增加单节点性能以及避免单节点存储故障。

8、lucence的内部结构是什么

![AM8{KaTeX parse error: Expected 'EOF', got '}' at position 12: EVPC_Y(X`5X}̲{~966W](d:\Docu…EVPC_Y(X`5X}{~966W.png)

Lucene 是有索引和搜索的两个过程,包含索引创建,索引,搜索三个要点。可以

基于这个脉络展开一些。

9、Elasticsearch 中的节点(比如共 20 个),其中的 10 个选了一个 master,另外 10 个选了另一个 master,怎么办?

1、当集群 master 候选数量不小于 3 个时,可以通过设置最少投票通过数量(discovery.zen.minimum_master_nodes)超过所有候选节点一半以上来解决脑裂问题;

2、当候选数量为两个时,只能修改为唯一的一个 master 候选,其他作为 data节点,避免脑裂问题。

10、客户端在和集群连接时,如何选择特定的节点执行请求?

1、TransportClient 利用 transport 模块远程连接一个 elasticsearch 集群。它并不加入到集群中,只是简单的获得一个或者多个初始化的 transport 地址,并以 轮询 的方式与这些地址进行通信。

11、对于GC方面,使用es时要注意什么?

1、SEE:https://elasticsearch.cn/article/32

2、倒排词典的索引需要常驻内存,无法 GC,需要监控 data node 上 segmentmemory 增长趋势。

3、各类缓存,field cache, filter cache, indexing cache, bulk queue 等等,要设置合理的大小,并且要应该根据最坏的情况来看 heap 是否够用,也就是各类缓存全部占满的时候,还有 heap 空间可以分配给其他任务吗?避免采用 clear cache 等“自欺欺人”的方式来释放内存。

4、避免返回大量结果集的搜索与聚合。确实需要大量拉取数据的场景,可以采用scan & scroll api 来实现。

5、cluster stats 驻留内存并无法水平扩展,超大规模集群可以考虑分拆成多个集群通过 tribe node 连接。

6、想知道 heap 够不够,必须结合实际应用场景,并对集群的 heap 使用情况做持续的监控

12、在并发情况下,es如何保证读写一致

答:1、可以通过版本号使用乐观并发控制,以确保新版本不会被旧版本覆盖,由应用层来处理具体的冲突;

2、另外对于写操作,一致性级别支持 quorum/one/all,默认为 quorum,即只有当大多数分片可用时才允许写操作。但即使大多数可用,也可能存在因为网络等原因导致写入副本失败,这样该副本被认为故障,分片将会在一个不同的节点上重建。

3、对于读操作,可以设置 replication 为 sync(默认),这使得操作在主分片和副本分片都完成后才会返回;如果设置 replication 为 async 时,也可以通过设置搜索请求参数_preference 为 primary 来查询主分片,确保文档是最新版本。

13、如何监控es集群状态

Marvel 让你可以很简单的通过 Kibana 监控 Elasticsearch。你可以实时查看你的集群健康状态和性能,也可以分析过去的集群、索引和节点指标。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值