D. Same GCDs, Educational Codeforces Round 81 (Rated for Div. 2)
http://codeforces.com/contest/1295/problem/D
You are given two integers a and m. Calculate the number of integers x such that 0≤x<m and gcd(a,m)=gcd(a+x,m).
Note: gcd(a,b) is the greatest common divisor of a and b.
思路:
首先提取a,m的最大公约数g,令
a
=
x
g
,
m
=
y
g
a = xg,m = yg
a=xg,m=yg
需要使得 g c d ( x g , y g ) = g c d ( x g + z , y g ) gcd(xg,yg) = gcd(xg+z,yg) gcd(xg,yg)=gcd(xg+z,yg)
易知z为g的倍数,令 z = k g , k ∈ [ 0 , y ) z = kg,k \in [0,y) z=kg,k∈[0,y)
那么满足所有 g c d ( x + k , y ) = 1 gcd(x+k,y) = 1 gcd(x+k,y)=1的k都可以,即求[x,y+x)中与y互素的数的个数
因为a < m,那么可知x < y,则要分别算[x,y],(y,x+y)中与y互素的数的个数
因为 g c d ( x , y ) = g c d ( y , x % y ) gcd(x,y) = gcd(y,x\%y) gcd(x,y)=gcd(y,x%y),故当 x + k ∈ ( y , x + y ) x+k \in (y,x+y) x+k∈(y,x+y) 时, g c d ( x + k , y ) = g c d ( y , x + k − y ) gcd(x+k,y) = gcd(y,x+k-y) gcd(x+k,y)=gcd(y,x+k−y),而 x + k − y ∈ ( 0 , x ) x+k-y \in (0,x) x+k−y∈(0,x)
所以(y,x+y)中与y互素的数的个数与(0,x)中与y互素的数的个数相等,故总的答案为[1,y]中与y互素的数的个数
#include<bits/stdc++.h>
#define ll long long
using namespace std;
long long gcd(long long a,long long b)
{
return b?gcd(b,a%b):a;
}
long long oula(long long n)
{
long long rea = n;
for(long long i = 2;i * i <= n;++i)
{
if(n % i == 0)
{
rea -= rea/i;
while(n % i == 0)
n /= i;
}
}
if(n > 1)
rea -= rea/n;
return rea;
}
int t;
ll a,b;
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%lld%lld",&a,&b);
ll g = gcd(a,b);
a/=g,b/=g;
ll ans = oula(b);
printf("%lld\n",ans);
}
return 0;
}